Skip to main content
Log in

Analysis of Critical Damage in the Communication Network: I. Model and Computational Experiment

  • MATHEMATICAL SIMULATION
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

In the computational experiments on a flow model of a communication and control network, changes in the system’s functional characteristics under destructive effects are studied. The removal of a subset of edges is considered to be critical damage if it results in the absence of connection paths for at least one pair of source-sink nodes. For each case of damage, both the total number of disconnected pairs and all communication directions, the throughput of which is less than the specified standard value, are determined. Based on the data obtained, multiparameter diagrams are constructed for assessing changes in the maximum flows for each dividing cut and all pairs of vertices. The boundary points on the diagrams correspond to the most dangerous damage not dominated by at least one damage indicator. The results of the effects of destructive effects on network systems with various structural features are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Jensen and W. J. P. Barnes, Network Flow Programming (Krieger, Malabar, FL, 1987).

    MATH  Google Scholar 

  2. H. Frank and I. T. Frisch, Communication, Transmission, and Transportation Networks (Addison-Wesley, Reading, MA, 1971).

    MATH  Google Scholar 

  3. Yu. B. Germeier, Introduction to the Theory of Operations Research (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  4. T. N. Dinh and M. T. Thai, “Assessing attack vulnerability in networks with uncertainty,” in Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Kowloon,2015, pp. 2380–2388.

  5. Yu. E. Malashenko, I. A. Nazarova, and N. M. Novikova, “An approach to the analysis of possible structural damages in multicommodity network systems,” Comput. Math. Math. Phys. 59, 1562 (2019).

    Article  MathSciNet  Google Scholar 

  6. M. Lalou, M. A. Tahraoui, and H. Kheddouci, “The critical node detection problem in networks: A survey,” Comput. Sci. Rev. 28, 92–117 (2018).

    Article  MathSciNet  Google Scholar 

  7. J. Walteros and P. Pardalos, “Selected topics in critical element detection,” Optimiz. Appl. 71, 9–26 (2012).

    MathSciNet  MATH  Google Scholar 

  8. A. Veremyev, O. A. Prokipyev, and E. L. Pasiliao, “Critical nodes for distance-based connectivity and related problems in graphs,” Networks 66, 170–195 (2015).

    Article  MathSciNet  Google Scholar 

  9. M. Ventresca, K. R. Harrison, and B. M. Ombuki-Berman, “The bi-objective critical node detection problem,” Eur. J. Oper. Res. 265, 895–908 (2018).

    Article  MathSciNet  Google Scholar 

  10. J. Li, P. M. Pardalos, B. Xin, and J. Chen, “The bi-objective critical node detection problem with minimum pairwise connectivity and cost: Theory and algorithms,” Soft Comput. 23, 1–16 (2019).

    Article  Google Scholar 

  11. A. Kuhnle, N. P. Nguyen, T. N. Dinh, and M. T. Thai, “Vulnerability of clustering under nodes failure in complex networks,” Social Network Anal. Mining 7, 8–24 (2017).

    Article  Google Scholar 

  12. Yu. E. Malashenko, I. A. Nazarova, and N. M. Novikova, “Analysis of cluster damages in network systems,” Comput. Math. Math. Phys. 60, 341 (2020).

    Article  MathSciNet  Google Scholar 

  13. T. H. Grubesic, T. C. Matisziw, A. T. Murray, et al., “Comparative approaches for assessing network vulnerability,” Int. Regional Sci. Rev. 31, 88 (2008).

    Article  Google Scholar 

  14. A. T. Murray, “An overview of network vulnerability modeling approaches,” Geo J. 78, 209–221 (2013).

    Google Scholar 

  15. J. Johansson, “Risk and vulnerability analysis of interdependent technical infrastructures. Addressing socio-technical systems,” Doctoral Thesis in Industrial Automation (Lund Univ., Lund, 2010).

  16. T. Gomes, C. Esposito, D. Hutchison, F. Kuipers, J. Rak, and M. Tornatore, “A survey of strategies for communication networks to protect against large-scale natural disasters,” in Proceedings of the International Workshop on Reliable Networks Design and Modeling (RNDM), Halmstad,2016, pp. 11–22.

  17. V. Velichko, V. Popkov, and G. Popkov, Models and Methods for Increasing the Survivability of Modern Communication Systems (Goryachaya Liniya - Telekom, Moscow, 2017) [in Russian].

    Google Scholar 

  18. A. K. Levakov, Features of the Functioning of Next-Generation Telecommunication Networks in Emergency Situations (IRIAS, Moscow, 2012) [in Russian].

    Google Scholar 

  19. S. I. Noskov, A. A. Butin, and L. E. Sokolova, “Multicriterial assessment of the level of vulnerability of the objects of infomatization,” Dokl. TUSURa, No. 2 (32), 137–142 (2014).

    Google Scholar 

  20. S. Wang, J. Zhang, and N. Duana, “Multipleperspective vulnerability analysis of the power network,” Phys. A (Amsterdam, Neth.) 492, 1581–1590 (2018).

  21. A. M. Faddeev, “Vulnerability of transmission systems of Russia, other post-soviet states and european countries to the cascade faults,” Vestn. MGU. Ser. 5: Geogr., No. 1, 46–53 (2016).

  22. Y. E. Malashenko, I. A. Nazarova, N. M. Novikova, and I. I. Pospelova, “A network flow model for power and energy system with changing capabilities,” Int. J. Public Administr. 42, 1323–1332 (2019).

    Article  Google Scholar 

  23. Yu. E. Malashenko, I. A. Nazarova, and N. M. Novikova, “Fuel and energy system control at large-scale damages. IV. A priori estimates of structural and functional vulnerability,” J. Comput. Syst. Sci. Int. 57, 907–920 (2018).

    Article  Google Scholar 

  24. J. O. Royset and R. K. Wood, “Solving the bi-objective maximum-flow network-interdiction problem,” INFORMS J. Comput. 19, 175–184 (2007).

    Article  MathSciNet  Google Scholar 

  25. C. D. Nicholson, K. Kashbarker, and J. E. Ramirez-Marquez, “Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning,” Reliab. Eng. Syst. Safety 145, 62–73 (2016).

    Article  Google Scholar 

  26. T. Cormen, Ch. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms (MIT Press, Boston, MA, 2009).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Malashenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malashenko, Y.E., Nazarova, I.A. Analysis of Critical Damage in the Communication Network: I. Model and Computational Experiment. J. Comput. Syst. Sci. Int. 59, 745–754 (2020). https://doi.org/10.1134/S106423072005010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106423072005010X

Navigation