Skip to main content
Log in

Software for the Automated Control of Robotic Optical Observatories

  • COMPUTER METHODS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A description of the software designed for controlling robotic observatories is given. Its main features and functional capabilities are described. Special attention is paid to approaches to improving the utilization of the telescope observation time, which is its main resource. A solution for the automation of routine observational tasks the execution of which directly affects the efficiency of the entire system is proposed. It is shown that the use of the new software increased the total coverage of the celestial sphere during an observational night by 25–30%. The main discoveries and achievements of two remote robotic observatories controlled by this software are presented. During the operation of these observatories, more than half-a-million astrometric measurements of small bodies of the Solar System were made, more than hundred photometric light curves were obtained, and a number of near-Earth asteroids and comets were discovered. The optical component of the afterglow of gamma-ray bursts was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. L. V. Elenin, Yu. N. Kruglyi, I. E. Molotov, R. Ya. Inasaridze, V. V. Rumyantsev, I. V. Reva, T. Shil’dknekht, E. G. Perez Tizherina, Zh. E. Perez Leon, S. E. Shmal’ts, A. O. Novichonok, N. Tungalag, T. N. Kokina, and M. A. Tereshina, “ISON robotic asteroid survey, search for NEA and comets from both hemispheres of the Earth,” Ekol. Vestn. Nauch. Tsentr. Chernom. Ekon. Sotrudn., No. 4 (3), 32–38 (2017).

  2. I. E. Molotov, V. M. Agapov, V. V. Kupriyanov, V. V. Titenko, Z. N. Khutorovskii, I. S. Guseva, V. V. Rumyantsev, V. V. Biryukov, E. A. Litvinenko, G. V. Borisov, S. A. Sukhanov, Yu. V. Burtsev, G. I. Kornienko, N. S. Bakhtigaraev, O. P. Rusakov, et al., “Scientific network of optical instruments for astrometric and photometric observations,” Izv. Gl. Astron. Obser. Pulkovo, No. 219 (1), 233–248 (2009).

    Google Scholar 

  3. V. Kouprianov, “ISON data acquisition and analysis software,” in Proceedings of the 6th European Conference on Space Debris, Darmstadt, 2013, p. 21.

  4. C. Pennypacker, M. Boer, R. Denny, F. V. Hessman, J. Aymon, N. Duric, S. Gordon, D. Barnaby, G. Spear, and V. Hoette, “RTML—a standard for use of remote telescopes. Enabling ubiquitous use of remote telescopes,” Astron. Astrophys. 395, 727–731 (2002).

    Article  Google Scholar 

  5. V. Haridas, T. Budavári, W. O’Mullane, A. S. Szalay, A. Thakar, A. Conti, A. Volpicelli, and B. Pence, “Making FITS available on dot net and its applications,” Astron. Data Anal. Software Syst. 314, 424 (2004).

    Google Scholar 

  6. R. B. Denny, “Dispatch scheduling of automated telescopes,” in Proceedings of the 23rd Annual Symposium of the Society for Astronomical Sciences on Telescope Science, Big Bear, 2004, p. 35.

  7. P. Kubánek, M. Jelínek, M. Nekola, M. Topinka, J. Štrobl, R. Hudec, T. D. J. M. Sanguino, P. A. de Ugarte, and A. J. Castro-Tirado, “RTS2—remote telescope system, 2nd version,” AIP Conf. Proc. 727, 753–756 (2004).

    Article  Google Scholar 

  8. D. A. Vallado, Fundamentals of Astrodynamics and Applications (Microcosm, Hawthorne, 2013).

    MATH  Google Scholar 

  9. S. D. Barthelmy, T. L. Cline, N. Gehrels, T. G. Bialas, M. A. Robbins, J. R. Kuyper, G. J. Fishman, C. Kouveliotou, and C. A. Meegan, “BACODINE: The real-time BATSE gamma-ray burst coordinates distribution network,” AIP Conf. Proc. 307, 643 (1994).

    Article  Google Scholar 

  10. G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos. Soc. 5, 283–291 (1835).

    Google Scholar 

  11. M. Dho, “La messa a fuoco automatica con FocusMax,” Astron. Riv. Unione Astrofil. Ital. 1, 37–39 (2004).

    Google Scholar 

  12. E. Bertin and S. Arnouts, “SExtractor: Software for source extraction,” Astron. Astrophys. Suppl. 117, 393–404 (1996).

    Google Scholar 

  13. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer, New York, 1980).

    Book  Google Scholar 

  14. D. Lang, D. W. Hogg, K. Mierle, M. Blanton, and S. Roweis, “Astrometry.net: Blind astrometric calibration of arbitrary astronomical images,” Astron. J. 139, 1782–1800 (2010).

    Article  Google Scholar 

  15. L. Elenin, A. Sergeyev, A. Novichonok, W. H. Ryan, R. S. McMillan, J. V. Scotti, M. L. Terenzoni, H. Sato, and G. V. Williams, “Comet C/2010 X1 (Elenin),” IAU Circ. 9189, 1 (2010).

    Google Scholar 

  16. A. Pozanenko, E. Mazaeva, A. Volnova, L. Elenin, R. Inasaridze, V. Aivazyan, I. Reva, A. Kusakin, N. Tungalag, S. Schmalz, E. Chornaya, A. Matkin, A. Erofeeva, E. Litvinenko, K. Polyakov, et al., “GRB afterglow observations by international scientific optical network (ISON),” in Proceedings of the 8th Huntsville Gamma-Ray Burst Symposium, Huntsville, 2016, p. 4074.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Elenin.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elenin, L.V., Molotov, I.E. Software for the Automated Control of Robotic Optical Observatories. J. Comput. Syst. Sci. Int. 59, 894–904 (2020). https://doi.org/10.1134/S1064230720040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230720040036

Navigation