Skip to main content
Log in

Indicatory Horizontal Stabilization of the Platform with Two Degrees of Freedom of a Uniaxial Wheel Module at Its Displacements on a Nonhorizontal, Uneven Surface

  • Control Systems of Moving Objects
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

In this paper, we propose the structure of a uniaxial wheel module moving on a nonhorizontal uneven surface without slipping. Its platform has two degrees of freedom relative to the axis of the wheel pair and the upper pendulum relative to this axis. The indicatory stabilization of the platform in the horizontal plane is realized by the reactive moments of the driving motors of the stabilizing and compensating flywheels and by the gravitational moments of the forces produced by the stabilizing flywheels during their linear movements controlled by the linear motors. Information on the deviations of the platform from the horizontal plane is formed by the accelerometer sensors of the horizon, while the deviations from the underlying surface are detected by laser altimeters. We develop a mathematical model of the module’s motion and propose structures for controlling the rotational and translational movements of its flywheels. The effectiveness of the indicatory stabilization system mentioned above is confirmed by the results of the numerical modeling of the dynamics of the horizontal leveling processes of the platform when the module moves on a nonhorizontal, uneven underlying surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Aleshin, A. I. Chernomorskii, S. V. Feshchenko, et al., Orientation, Navigation and Stabilization of Uniaxial Wheeled Modules, Ed. by B. S. Aleshin and A. I. Chernomorskii (Mosk. Aviats. Inst., Moscow, 2012) [in Russian].

  2. V. N. Maksimov and A. I. Chernomorskii, “Integrated navigation and local mapping system for a single-axis wheeled module,” Girosk. Navigats. 92 (1), 116–132 (2016).

    Google Scholar 

  3. V. N. Belotelov and Yu. G. Martynenko, “Control of spatial motion of inverted pendulum mounted on a wheel pair,” Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 10–28 (2006).

    Google Scholar 

  4. S. Agrawal, J. Franch, and K. Pathak, “Velocity control of a wheeled inverted pendulum by partial feedback linearization,” in Proceedings of the 43rd IEEE Conference on Decision and Control, Univ. of Delaware, Newark, USA, 2004.

    Google Scholar 

  5. F. Grasser, A. D’Arrigo, S. Colombi, and A. C. Rufer, “JOE: a mobile, inverted pendulum,” IEEE Trans. Ind. Electron. 49, 107–114 (2002).

    Article  Google Scholar 

  6. V. N. Maksimov and A. I. Chernomorskii, “Control system of nonholonomic uniaxial wheeled module for monitoring geometry parameters of airfield pavements,” J. Comput. Syst. Sci. Int. 54, 483 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Voth, “Segway to the future (autonomous mobile robot),” IEEE Trans. Ind. Electron. 49, 1–9 (2002).

    Article  Google Scholar 

  8. A. V. Lenskii and A. M. Formal’skii, “Gyroscopic stabilization of a two-wheeled robot bicycle,” Dokl. Math. 70, 993–997 (2004).

    Google Scholar 

  9. A. V. Lenskii and A. M. Formal’skii, “Two-wheel robot–bicycle with a gyroscopic stabilizer,” J. Comput. Syst. Sci. Int. 42, 482 (2003).

    MATH  Google Scholar 

  10. A. V. Beznos, A. A. Grishin, A. V. Lenskii, D. E. Okhotsimskii, and A. M. Formal’skii, “A pendulum controlled using a flywheel,” Dokl. Math. 68, 302–307 (2003).

    MATH  Google Scholar 

  11. A. V. Beznos, A. A. Grishin, A. V. Lenskii, D. E. Okhotsimskii, and A. M. Formal’skii, “A flywheel use-based control for a pendulum with a fixed suspension point,” J. Comput. Syst. Sci. Int. 43, 22 (2004).

    MATH  Google Scholar 

  12. A. M. Formal’skii, Motion Control of Unstable Objects (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  13. B. S. Aleshin, E. D. Kuris, K. S. Lel’kov, V. N. Maksimov, and A. I. Chernomorskii, “Control of the angular orientation of the platform of a uniaxial wheeled module moving without slippage over an underlying surface,” J. Comput. Syst. Sci. Int. 56, 146 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. S. Aleshin, V. N. Maksimov, V. V. Mikheev, and A. I. Chernomorskii, “Horizontal stabilization of the twodegree- of-freedom platform of a uniaxial wheeled module tracking a given trajectory over an underlying surface,” J. Comput. Syst. Sci. Int. 56, 471 (2017).

    Article  MATH  Google Scholar 

  15. A. Yu. Ishlinskii, “Full compensation of external disturbances caused by maneuvering in gyroscopic systems,” in The Theory of Invariance and its Application in Automatic Devices, Collection of Articles of Acad. of Science Ukr. SSR (Moscow, 1959), pp. 81–92 [in Russian].

    Google Scholar 

  16. I. V. Strazheva and V. S. Melkumov, Vector-Matrix Methods in Flight Mechanics (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  17. V. V. Dobronravov, Principles of Analytic Mechanics, The School-Book (Vyssh. Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  18. Yu. G. Martynenko and A. M. Formal’skii, “A control of the longitudinal motion of a single-wheel robot on an uneven surface,” J. Comput. Syst. Sci. Int. 44, 662 (2005).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Aleshin.

Additional information

Original Russian Text © B.S. Aleshin, V.V. Mikheev, A.I. Chernomorskii, 2018, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2018, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, B.S., Mikheev, V.V. & Chernomorskii, A.I. Indicatory Horizontal Stabilization of the Platform with Two Degrees of Freedom of a Uniaxial Wheel Module at Its Displacements on a Nonhorizontal, Uneven Surface. J. Comput. Syst. Sci. Int. 57, 801–812 (2018). https://doi.org/10.1134/S1064230718050039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230718050039

Navigation