Skip to main content
Log in

Improved Lagrangian bounds and heuristics for the generalized assignment problem

  • Systems Analysis and Operations Research
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Modified Lagrangian bounds are proposed for the generalized assignment problem. The approach is based on a double decomposable structure of the formulation. A family of greedy heuristics is considered to get Lagrangian based feasible solutions. Numerical results for problem instances with number of agents close to number of tasks are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Lasdon, Optimization Theory for Large Scale Systems (Dover, New York, 2002).

    MATH  Google Scholar 

  2. V. Jeet and E. Kutanoglu, “Lagrangian relaxation guide problem space search heuristics for generalized assignment problem,” Eur. J. Operat. Res. 182, 1039–1056 (2007).

    Article  MATH  Google Scholar 

  3. M. Laguna, J. P. Kelly, J. L. Gonzalez Velarde, and F. Glover, “Tabu search for the multilevel generalized assignment problem,” Eur. J. Operat. Res. 82, 176–189 (1995).

    Article  MATH  Google Scholar 

  4. C. Lemaréchal, “Lagrangian relaxation,” in Computational Combinatorial Optimization, Ed. by M. Junger and D. Naddefs (Springer, Berlin, 2001), pp. 115–160.

    Google Scholar 

  5. C. Lemaréchal, “The omnipresence of lagrange,” Ann. Operat. Res. 153, 9–27 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Boschetti and V. Maniezzo, “Benders descomposition, lagrangian relaxation and metaheuristics design,” J. Heuristics 15, 283–312 (2009).

    Article  MATH  Google Scholar 

  7. I. S. Litvinchev, “Refinement of lagrangian bounds in optimization problems,” Comput. Math. Math. Phys. 47, 1101–1107 (2007).

    Article  MathSciNet  Google Scholar 

  8. I. Litvinchev, S. Rangel, and J. Saucedo, “A lagrangian bound for many-to-many assignment problems,” J. Combin. Optimiz. 19, 241–257 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Bukard, M. DellAmico, and S. Martello, Assignment Problems (SIAM, Philadelphia, 2009).

    Book  Google Scholar 

  10. D. W. Pentico, “Assignment problems: a golden anniversary survey,” Eur. J. Operat. Res. 176, 774–793 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. K. Martin, Large Scale Linear and Integer Programming: A Unified Approach (Kluwer, Boston, 1999).

    Book  Google Scholar 

  12. P. C. Chu and J. E. Beasley, “A genetic algorithm for the generalized assignment problem,” Comput. Operat. Res. 24, 17–23 (1997).

    Article  MATH  Google Scholar 

  13. H. E. Romeijn and D. Romero, “A class of greedy algorithms for the generalized assignment problem,” Discrete Appl. Math. 104, 209–235 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Yaguira and T. Ibaraki, “Generalized assignment problem,” in Handbook of Approximation Algorithms and Metaheuristics, CRC in Comput. Inform. Sci. Ser., Ed. by T. F. Gonzalez (Taylor, CRC, Boca Raton, FL, 2007), Chap.48.

    Google Scholar 

  15. M. Posta, J. A. Ferland, and P. Michelon, “An exact method with variable fixing for solving the generalized assignment problem,” Comput. Optimiz. Appl. 52, 629–644 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Sethanan and R. Pitakaso, “Improved differential evolution algorithms for solving generalized assignment problem,” Expert Syst. Appl. 45, 450–459 (2016).

    Article  Google Scholar 

  17. S. Martello and P. Toth, Knapsack Problems. Algorithms and Computer Implementations (Wiley, Chichester, 1990).

    MATH  Google Scholar 

  18. A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes I,” Izv. Akad. Nauk, Tekh. Kibernet., No. 4, 212–223 (1993).

    MathSciNet  MATH  Google Scholar 

  19. A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes II,” Izv. Akad. Nauk, Tekh. Kibernet., No. 6, 3–14 (1993).

    MathSciNet  MATH  Google Scholar 

  20. A. A. Mironov and V. I. Tsurkov, “Transportation problems with minimax criteria,” Dokl. Akad. Nauk 346 (2), 1–4 (1996).

    MATH  Google Scholar 

  21. A. A. Mironov and V. I. Tsurkov, “Hereditarily minimax matrices in models of transportation type,” J. Comput. Syst. Sci. Int. 37, 927–944 (1998).

    MATH  Google Scholar 

  22. A. A. Mironov and V. I. Tsurkov, “Minimax under nonlinear transportation constraints,” Dokl. Math. 64, 351–354 (2001).

    MATH  Google Scholar 

  23. A. A. Mironov and V. I. Tsurkov, “Minimax in transportation models with integral constraints: I,” J. Comput. Syst. Sci. Int. 42, 562–574 (2003).

    MATH  Google Scholar 

  24. A. A. Mironov, V. V. Fedorchuk, and V. I. Tsurkov, “Minimax in transportation models with integral constraints: II,” J. Comput. Syst. Sci. Int. 44, 732–752 (2005).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Litvinchev.

Additional information

Original Russian Text © I. Litvinchev, M. Mata, J. Saucedo, S. Rangel, 2017, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2017, No. 5, pp. 53–59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinchev, I., Mata, M., Saucedo, J. et al. Improved Lagrangian bounds and heuristics for the generalized assignment problem. J. Comput. Syst. Sci. Int. 56, 803–809 (2017). https://doi.org/10.1134/S1064230717050070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230717050070

Navigation