Skip to main content
Log in

Comparative analysis of differential evolution methods to optimize parameters of fuzzy classifiers

  • Control in Stochastic Systems and Under Uncertainty Conditions
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

We have compared the efficiency of 14 modifications of the differential evolution method for optimizing the parameters of fuzzy classifiers, the rule bases of which are initialized by the algorithm of the structure generation on the basis of extreme parameter values. The comparison was conducted on 12 well-known datasets of the KEEL repository. Based on the results of the operation of classifiers optimized by these algorithms, we ranked the methods and compared their analogs. The comparison criteria are represented by the percentage of correct classification and the number of rules in a classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Vasil’ev, A. K. Zherlov, E. A. Fedosov, and B. E. Fedunov, Intelligent Control of Dynamic Systems (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  2. Evolving Intelligent Systems. Methodology and Applications, Ed. by P. Angelov, D. P. Filev, and N. Kasabov (Wiley, Hoboken, 2010).

  3. H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems,” IEEE Trans. Syst., Man, Cybernet., Pt. B 29, 601–608 (1999).

    Article  Google Scholar 

  4. M. Fazzolari, R. Alcala, and F. Herrera, “A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems: D-MOFARC algorithm,” Appl. Soft Comput. 24, 470–481 (2014).

    Article  Google Scholar 

  5. E. Mezyk and O. Unold, “Mining fuzzy rules using an artificial immune system with fuzzy partition learning,” Appl. Soft Comput. 11, 1965–1974 (2011).

    Article  Google Scholar 

  6. M. F. Ganji and M. S. Abadeh, “A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis,” Expert Systems Appl. 38, 14650–14659 (2011).

    Article  Google Scholar 

  7. I. Hodashinsky, A. Anfilofyev, R. Meshcheryakov, and I. Gorbunov, “Designing fuzzy systems to predict efficiency of the non-pharmacological treatment,” Adv. Mater. Res. 1085, 465–470 (2015).

    Article  Google Scholar 

  8. S. Garcia-Galan, R. P. Prado, and J. E. M. Exposito, “Rules discovery in fuzzy classifier systems with pSO for scheduling in grid computational infrastructures,” Appl. Soft Comput. 29, 424–435 (2015).

    Article  Google Scholar 

  9. I. Hodashinsky, R. Meshcheryakov, and A. Anfilofiev, “Identification of fuzzy classifiers based on weed optimization algorithm,” in Creativity in Intelligent, Technologies, and Data Science (Springer, Heidelberg, 2015), pp. 216–223.

    Google Scholar 

  10. I. Hodashinsky, D. Yu. Minina, and K. S. Sarin, “Identification of the parameters of fuzzy approximators and classifiers based on the cuckoo search algorithm,” Optoelectron. Instrum. Data Process. 51, 234–240 (2015).

    Article  Google Scholar 

  11. X. Li and G. Wang, “Optimal band selection for hyperspectral data with improved differential evolution,” J. Ambient Intelligence Humaniz. Comput. 6, 675–688 (2015).

    Article  Google Scholar 

  12. Advances in Differential Evolution, Ed. by U. K. Chakraborty (Springer, Berlin, Heidelberg, 2008).

  13. M. Eftekhari, S. D. Katebi, M. Karimi, and A. H. Jahanmiri, “Eliciting transparent fuzzy model using differential evolution,” Appl. Soft Comput. 8, 466–476 (2008).

    Article  Google Scholar 

  14. M.-T. Su, C.-H. Chen, C.-J. Lin, and C.-T. Lin, “A rule-based symbiotic modified differential evolution for self-organizing neuro-fuzzy systems,” Appl. Soft Comput. 11, 4847–4858 (2011).

    Article  Google Scholar 

  15. H. Hwang, “Identification of a gaussian fuzzy classifier,” Int. J. Control, Autom. Syst. 2, 118–124 (2004).

    Google Scholar 

  16. S. Li and W. Sun, “Design of fuzzy logic controller based on differential evolution algorithm,” Commun. Comput. Inform. Sci. 462, 18–25 (2014).

    Article  Google Scholar 

  17. F. Cheong and R. Lai, “Designing a hierarchical fuzzy logic controller using the differential evolution approach,” Appl. Soft Comput. 7, 481–491 (2007).

    Article  Google Scholar 

  18. N. Hachicha, B. Jarboui, and P. Siarry, “A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics,” Inform. Sci. 181, 79–91 (2011).

    Article  Google Scholar 

  19. S.-K. Oh, W.-D. Kim, and W. Pedrycz, “Design of optimized cascade fuzzy controller based on differential evolution: simulation studies and practical insights,” Eng. Appl. Artif. Intelligence 25, 520–532 (2012).

    Article  Google Scholar 

  20. Z. Sun, N. Wang, D. Srinivasan, and Y. Bi, “Optimal tuning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm,” Electric. Power Energy Syst. 62, 19–28 (2014).

    Article  Google Scholar 

  21. Y. Bi, D. Srinivasan, X. Lu, Z. Sun, and W. Zeng, “Type-2 fuzzy multi-intersection traffic signal control with differential evolution optimization,” Expert Syst. Appl. 41, 7338–7349 (2014).

    Article  Google Scholar 

  22. M. Marinaki, Y. Marinakis, and G. E. Stavroulakis, “Fuzzy control optimized by a multi-objective differential evolution algorithm for vibraion suppression of smart structures,” Comput. Struct. 147, 126–137 (2015).

    Article  Google Scholar 

  23. I. A. Khodashinskii and P. A. Dudin, “Identification of fuzzy systems based on method of differential evolution,” Dokl. Tomsk. Univ. Syst. Upravl. Radioelektron. 23, 178–183 (2011).

    Google Scholar 

  24. R. Storn and K. V. Price, “Differential evolution–a simple and efficient adaptive scheme for global optimization over continuous spaces,” Tech. Rep. No. TR-95-012 (ICSI, 1995). ftp://ftp.icsi.berkeley.edu/pub/techreports/ 1995/tr-95-012.pdf

  25. G. Jeyakumar and C. S. Velayutham, “Distributed heterogeneous mixing of differential and dynamic differential evolution variants for unconstrained global optimization,” Soft Comput. 18, 1949–1965 (2014).

    Article  Google Scholar 

  26. J. Nayak, B. Naik, and H. S. Behera, “Fuzzy c-means (FCM) clustering algorithm: A decade review from 2000 to 2014,” in Computational Intelligence in Data Mining, Ed. by L. C. Jain, H. S. Behera, J. K. Mandal, and D. P. Mohapatra (Springer, India, 2015), Vol. 2, pp. 133–149.

    Google Scholar 

  27. J. Abonyi and F. Szeifert, “Supervised fuzzy clustering for the identification of fuzzy classifiers,” Pattern Recognit. Lett. 24, 2195–2207 (2003).

    Article  MATH  Google Scholar 

  28. I. A. Hodashinsky and I. V. Gorbunov, “Algorithms of the tradeoff between accuracy and complexity in the design of fuzzy approximators,” Optoelectron., Instrum., Data Process. 49, 569–577 (2013).

    Article  Google Scholar 

  29. I. A. Khodashinskii and I. V. Gorbunov, “Design of fuzzy classifiers based on bee colony algorithm,” in Proceedings of the All-Russia Conference with International Participation on Knowledge—Ontologies—Theories ZONT-2011 (Inst. Mat. im. S. L. Soboleva, Novosibirsk, 2011), Vol. 2, pp. 117–125.

    Google Scholar 

  30. J. Huysmans, R. Setiono, B. Baesens, and J. Vanthienen, “Minerva: Sequential covering for rule extraction,” IEEE Trans. Syst., Man, Cybernet., Part B 38, 299–309 (2008).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Hodashinsky.

Additional information

Original Russian Text © M.A. Mekh, I.A. Hodashinsky, 2017, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2017, No. 4, pp. 65–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekh, M.A., Hodashinsky, I.A. Comparative analysis of differential evolution methods to optimize parameters of fuzzy classifiers. J. Comput. Syst. Sci. Int. 56, 616–626 (2017). https://doi.org/10.1134/S1064230717040116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230717040116

Navigation