Skip to main content
Log in

Formation of high inclined orbits to the ecliptic by multiple gravity assist maneuvers

  • Control Systems of Moving Objects
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Methods for designing trajectories of spacecraft (SC) for missions that need to increase the inclination of their orbits to the ecliptic using energy-efficient gravity assist maneuvers (GAMs) around planets, their moons, and small Solar system bodies are developed. The focus is on the development of algorithms (taking into account accurate ephemerides) for designing chains of multiple GAMs that significantly raise the orbit of a SC above the plane of the ecliptic. Complete analytical formulas for the change of inclination as a result of a GAM in the general case of elliptic orbits of the SC and the partner planet are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “To the high inclined orbit formation with use of gravity assists maneuvers,” KIAM Preprint No. 64 (Keldysh Inst. Appl. Math., Moscow, 2015).

    Google Scholar 

  2. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “Orbit’s inclination change of celestial bodies in the Solar system with using gravity assists maneuvers,” KIAM Preprint No. 15 (Keldysh Inst. Appl. Math., Moscow, 2016).

    Google Scholar 

  3. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “The synthesis of gravity assist maneuvers sequence of the spacecraft to achieve high inclined orbits over ecliptic,” KIAM Preprint No. 43 (Keldysh Inst. Appl. Math., Moscow, 2016).

    Google Scholar 

  4. A. V. Labunsky, O. V. Papkov, and K. G. Sukhanov, Multiple Gravity Assist Interplanetary Trajectories, ESI Book Series (Gordon and Breach, London, 1998), pp. 9–266.

    Google Scholar 

  5. N. J. Strange, R. Russell, and B. Buffington, “Mapping the V-infinity globe,” in Proceedings of the AIAA/AAS Space Flight Mechanics Meeting, 2007, AAS Paper 07–277. http://russell.ae.utexas.edu/FinalPublications/ConferencePapers/07Aug_AAS-07-277.pdf.

    Google Scholar 

  6. B. Buffington, N. J. Strange, and S. Campagnola, “Global moon coverage via hyperbolic flybys,” in Proceedings of the 23rd International Symposium on Space Flight Dynamics, Pasadena, CA, 2012.

    Google Scholar 

  7. A. Wolf, “Touring the Saturnian system,” Space Sci. Rev. 104, 101–128 (2002).

    Article  Google Scholar 

  8. Y. Kawakatsu, “V8 direction diagram and its application to swingby design,” in Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, 2009. http://issfd.org/ISSFD_2009/InterMissionDesignI/Kawakatsu.pdf.

    Google Scholar 

  9. J. M. S. Pérez, “Trajectory Design of Solar Orbiter,” in Proceedings of the 23rd International Symposium on Space Flight Dynamics, Pasadena, California, 2012. http://www.issfd.org/ISSFD_2012/ISSFD23_IMD1_3.pdf.

    Google Scholar 

  10. M. Konstantinov, V. Petukhov, and M. Thein, “Optimization spacecraft insertion into the system of heliocentric orbits for Sun exploration,” in Proceedings of the 65th International Astronautical Congress, Toronto, Canada, 2014, IAC-14-C1.9.4.

    Google Scholar 

  11. S. Campagnola and Y. Kawakatsu, “Jupiter magnetospheric orbiter: trajectory design in the Jovian system,” J. Spacecr. Rockets. 49, 318–324 (2012).

    Article  Google Scholar 

  12. G. Janin, “Trajectory design for the Solar orbiter mission,” Monogr. Real Acad. Cien. Zaragoza, No. 25, 177–218 (2004). http://www.unavarra.es/vijtmc/Bertiz_Def/177Janin.pdf.

    Google Scholar 

  13. Spacecraft Navigation during Deep Space Research, Ed. by E. P. Molotov and A. G. Tuchin (Radiotekhnika, Moscow, 2016) [in Russian].

  14. V. Sebekhei, Theory of Orbits: The Restricted Problem of Three Bodies (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  15. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “Bifurcation points during gravity assist tours in the Jovian system,” Dokl. Phys. 60, 210 (2015).

    Article  MATH  Google Scholar 

  16. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “Gravity assist maneuvers of a spacecraft in Jupiter system,” J. Comput. Syst. Sci. Int. 53, 445 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “Low-cost flights in the Jovian system using tisserand coordinates,” J. Comput. Syst. Sci. Int. 54, 808 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. V. Grushevskii, Yu. F. Golubev, V. V. Koryanov, and A. G. Tuchin, “Adaptive low radiation multibody gravity assist tours design in Jovian system for the landing on Jovian’s moons,” in Proceedings of the 65th International Astronautical Congress IAC 2014, Toronto, Canada, 2014, Manuscript IAC-14, C1,9,13.

    Google Scholar 

  19. L. F. Tóth, Dispositions on the Plane, Sphere and in Space (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Golubev.

Additional information

Original Russian Text © Yu.F. Golubev, A.V. Grushevskii, V.V. Koryanov, A.G. Tuchin, D.A. Tuchin, 2017, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2017, No. 2, pp. 108–132.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, Y.F., Grushevskii, A.V., Koryanov, V.V. et al. Formation of high inclined orbits to the ecliptic by multiple gravity assist maneuvers. J. Comput. Syst. Sci. Int. 56, 275–299 (2017). https://doi.org/10.1134/S1064230717020083

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230717020083

Navigation