Skip to main content
Log in

Low-cost flights in the Jovian system using Tisserand coordinates

  • Control Systems of Moving Objects
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Real ephemeris have been used to develop an algorithm for overcoming the “paradox of solo perturbations” for mass calculations in the simulation of gravity assist maneuvers in the Jovian system to approach to one of its satellites. The zone of excessive total ionizing dose is bypassed on the upper corridor of the Tisserand—Poincaré graph. Simultaneously, we perform a low-cost reduction of the asymptotic speed of the spacecraft required for approaching. These scenarios can be synthesized when the model of a restricted three-body problem is replaced by a pair of restricted three-body problems and the problem of four or more bodies. To derive a criterion that launches a given model, new Tisserand coordinates are introduced. Their usage shows that gravity cross-maneuvers are required at an early stage of the reduction of the spacecraft’s orbital period. As a result, a reasonable increase in the mission’s duration can be replaced by a sharp decline in the resulting ionizing dose and scenarios (comfortable with respect to this parameter and efficient in terms of the characteristic velocity consumption) for tours in the Jovian system (less than 70 krad for a standard protection of the Galileo spacecraft of 8 mm Al). This provides a considerable gain in the spacecraft payload for missions to Jupiter and makes it possible to enhance the reliability of the scientific equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Belbruno, Capture Dynamics and Chaotic Motions in Celestial Mechanics With Applications to the Construction of Low Energy (Princeton Univ. Press, Princeton, 2004; Izhev. Inst. Komp. Issled., Izhevsk, 2011).

    MATH  Google Scholar 

  2. M. A. Minovitch, “The determination and characteristics of ballistic interplanetary trajectories under the influence of multiple planetary attractions,” Tech. Rep. No. 32-464 (Jet Propulsion Lab., Pasadena, CA, 1963).

    Google Scholar 

  3. P. Ulivi and D. M. Harland, Robotic Exploration of the Solar System. Part 4: The Modern Era 2004–2013, Springer Praxis Books, Space Exploration, Vol. 12 (Springer, New York, 2015).

  4. A. Boutonnet and J. Schoenmaekers, “Mission analysis for the JUICE mission,” in Proceedings of the AAS 12-207 AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, 2012.

    Google Scholar 

  5. A. Boutonnet and J. Schoenmaekers, “JUICE: consolidated report on mission analysis (CReMA),” Reference WP-578, Is. 1 (ESA, Darmstadt, Germany, 2012).

    Google Scholar 

  6. A. V. Labunsky, O. V. Papkov, and K. G. Sukhanov, Multiple Gravity Assist Interplanetary Trajectories, Earth Space Institute Book Series (Gordon and Breach, London, 1998), pp. 33–68.

    Google Scholar 

  7. N. J. Strange and J. M. Longuski, “Graphical method for gravity-assist trajectory design,” J. Spacecr. Rockets 39, 9–16 (2002).

    Article  Google Scholar 

  8. S. D. Ross and D. J. Scheeres, “Multiple gravity assists, capture, and escape in the restricted three-body problem,” Siam J. Appl. Dyn. Syst. 6, 576–596 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. D. Ross, W. S. Koon, M. W. Lo, and J. E. Marsden, “Design of a multi-moon orbiter,” in Proceedings of the 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, 2003, Paper No. AAS 03-143.

    Google Scholar 

  10. S. Campagnola and R. P. Russell, “Endgame problem. Pt. 1: V-ininity leveraging technique and leveraging graph,” J. Guidance, Control, Dynam. 33 (1), 463–475 (2010).

    Article  Google Scholar 

  11. S. Campagnola and R. P. Russell, “Endgame problem. Pt. 2: Multi-body technique and TP graph,” J. Guidance, Control, Dynam. 33 (2), 476–486 (2010).

    Article  MathSciNet  Google Scholar 

  12. E. Barrabéz, G. Gómez, and J. Rodríguez-Canabal, “Notes for the gravitational assisted trajectories,” in Advanced Topics in Astrodynamics, Summer Course, Barcelona, 2004. http://www.ieec.fcr.es/astro04/notes/gravity.pdf

    Google Scholar 

  13. A. V. Grushevskii, Yu. F. Golubev, V. V. Koryanov, and A. G. Tuchin, “To the adaptive multibody gravity assist tours design in Jovian system for the Ganymede landing,” in Proceedings of the 24th International Symposium on Space Flight Dynamics (ISSFD), Laurel, Maryland, Johns Hopkins Univ. Appl. Phys. Laboratory, 2014, Paper S15-4.

    Google Scholar 

  14. A. V. Grushevskii, Y. F. Golubev, V. V. Koryanov, and A. G. Tuchin, “Adaptive low radiation multibody gravity assist tours design in Jovian system for the landing on Jovian’s moons,” in Proceedings of the 65th International Astronautical Congress IAC 2014, Toronto, Canada, 2014. IAC-14/C1/9/manuscripts/IAC-14,C1,9,13,x21406.pdf

    Google Scholar 

  15. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “Gravity assist maneuvers of a spacecraft in Jupiter system,” J. Comput. Syst. Sci. Int. 53, 445–463 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  16. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “Synthesis of space mission scenarios in the Jovian system using gravity assist maneuvers,” Dokl. Phys. 59, 226–228 (2014).

    Article  Google Scholar 

  17. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin, and D. A. Tuchin, “Mission design in Jovian system within model restricted four-body problem,” Preprint IPM No. 50 (Inst. Prikl. Matem. Keldysha, Moscow, 2014). http://library.keldysh.ru/preprint.asp?id=2014-50.

    Google Scholar 

  18. H. Poincaré, New Methods of Celestial Mechanics, Vol. 13 of History of Modern Physics and Astronomy (Am. Inst. of Phys., 1993; Nauka, Moscow, 1971).

    Google Scholar 

  19. V. G. Szebehely, Theory of Orbits in the Restricted Problem of Three Bodies (Academic Press, New York, 1967; Nauka, Moscow, 1982).

    Google Scholar 

  20. F. F. Tisserand, Traité de méchanique céleste (Gauthier-Villars, Paris, 1896), Vol. 4, pp. 203–205 [in French].

    Google Scholar 

  21. S. Campagnola and Y. Kawakatsu, “Jupiter magnetospheric orbiter: trajectory design in the Jovian system,” J. Spacecr. Rockets 49 (2), 318–324 (2012).

    Article  Google Scholar 

  22. NAIF Navigation and Ancillary Information Facility. http://naif.jpl.nasa.gov/naif/index.html. Cited June 8, 2013.

  23. Ephemeris of Jupiter’s Galilean satellites. ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/jup230.bsp. Cited June 8, 2013.

  24. N. Divine and H. B. Garrett, “Charged particle distribution in Jupiter’s magnetosphere,” J. Geophys. Res. A 88 (A9), 6889–6903 (1983).

    Article  Google Scholar 

  25. W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics,” Chaos 10, 427–469 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  26. C. C. Conley, “Low energy transit orbits in the restricted three-body problem,” Siam J. Appl. Dyn. Syst. 16, 732–746 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Senske, L. Prockter, R. Pappalardo, et al., “Science from the Europa clipper mission concept: exploring the habitability of Europa,” in Proceedings of the International Colloquium and Workshop on Ganymede Lander, Moscow, 2013. http://glcw2013.cosmos.ru/presentations

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Koryanov.

Additional information

Original Russian Text © Yu.F. Golubev, A.V. Grushevskii, V.V. Koryanov, A.G. Tuchin, D.A. Tuchin, 2015, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2015, No. 5, pp. 147–163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, Y.F., Grushevskii, A.V., Koryanov, V.V. et al. Low-cost flights in the Jovian system using Tisserand coordinates. J. Comput. Syst. Sci. Int. 54, 808–824 (2015). https://doi.org/10.1134/S1064230715050068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230715050068

Keywords

Navigation