Skip to main content
Log in

Influence of Meso- and Microclimatic Conditions on the CO2 Emission from Soils of the Urban Green Infrastructure of the Moscow Metropolis

  • RESPIRATION OF URBAN SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Against the background of global warming, urban ecosystems are becoming increasingly vulnerable to climate stresses. Strategies for climate adaptation developed for almost every major city in the world pay considerable attention to urban green infrastructure as a nature-oriented solution for carbon sequestration. However, the influence of urban climate on the spatiotemporal variability of CO2 emissions from urban soils remains poorly understood, which can lead to inaccurate estimates and inflated expectations of urban green infrastructure in the context of carbon neutrality. In 2019–2022, studies of the dynamics of CO2 emission with parallel monitoring of soil temperature and soil moisture were carried out at three green infrastructure sites of Moscow differing in their mesoclimatic conditions. For each object, plots with different types of vegetation were compared, which made it possible to assess the internal heterogeneity of soil and microclimatic conditions. Soil temperature determined up to 70% of the total variance of CO2 emissions. Mean annual soil temperature in the city center was almost 3–6°C higher than that in the peripheral areas (10–12 km from the center), whereas soil moisture in the center was 10–15% lower. Soils under lawns and shrubs were, on average, 1–2°C warmer and 10–15% wetter than soils under trees. The annual CO2 emission from soils under lawns was, on average, 20–30% higher than that from soils under tree plantations in the same area. At the same time, the differences between the plots with the same vegetation in the center and on the periphery reached 50%, which reflects the high vulnerability of urban soil carbon stocks to mesoclimatic anomalies and the high risks of a further increase in CO2 emissions from urban soils against the background of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. V. Abakumov, V. I. Polyakov, and S. N. Chukov, “Approaches and methods for studying soil organic matter in the carbon polygons of Russia (review),” Eurasian Soil Sci. 55 (7), 849–860 (2022). https://doi.org/10.1134/S106422932207002X

    Article  Google Scholar 

  2. I. P. Brianskaia, V. I. Vasenev, R. A. Brykova, V. N. Markelova, N. V. Ushakova, D. D. Gosse, E. V. Gavrilenko, and E. V. Blagodatskaya, “Analysis of volume and properties of imported soils for prediction of carbon stocks in soil constructions in the Moscow metropolis,” Eurasian Soil Sci. 53 (12), 1809–1817 (2020). https://doi.org/10.1134/S1064229320120042

    Article  Google Scholar 

  3. V. I. Vasenev, T. V. Prokof’eva, and O. A. Makarov, “The development of approaches to assess the soil organic carbon pools in megapolises and small settlements,” Eurasian Soil Sci. 46 (6), 685–696 (2013). https://doi.org/10.1134/S1064229313060100

    Article  Google Scholar 

  4. I. I. Vasenev, S. M. Melese, and A. O. Malakhov, “Ecological assessment of the seasonal dynamics of soil CO2 fluxes and humus content in soddy-podzolic soils on the slope catena of a forest park at different levels of recreational load,” AgroEkoInfo: Elektron. Nauchno-Proizvod. Zh., No. 4, https://doi.org/10.51419/202124419

  5. M. M. Vizirskaya, Candidate’s Dissertation in Biology (Moscow, 2014).

  6. Yu. N. Vodyanitskii and S. A. Shoba, “Biogeochemistry of carbon, iron, and heavy metals in wetlands (analytical review),” Moscow Univ. Soil Sci. Bull. 70 (3), 89–97 (2015).

    Article  Google Scholar 

  7. S. N. Gorbov, O. S. Bezuglova, P. N. Skripnikov, and S. A. Tishchenko, “Soluble organic matter in soils of the Rostov agglomeration,” Eurasian Soil Sci. 55 (7), 957–970 (2022). https://doi.org/10.1134/S1064229322070055

    Article  Google Scholar 

  8. A. L. Ivanov, I. Yu. Savin, V. S. Stolbovoi, Yu. A. Dukhanin, and D. N. Kozlov, “Methodological approaches to the development of a unified national system for monitoring and accounting for the balance of carbon and greenhouse gas emissions on the lands of the agricultural fund of the Russian Federation,” Byull. Pochv. Inst. im. V. V. Dokuchaeva 108, 175–218 (2021). https://doi.org/10.19047/0136-1694-2021-108-175-218

    Article  Google Scholar 

  9. K. V. Ivashchenko, N. D. Ananyeva, V. I. Vasenev, V. N. Kudeyarov, and R. Valentini, “Biomass and respiration activity of soil microorganisms in anthropogenically transformed ecosystems (Moscow region),” Eurasian Soil Sci. 47 (9), 892–903 (2014). https://doi.org/10.1134/S1064229314090051

    Article  Google Scholar 

  10. D. V. Karelin, D. G. Zamolodchikov, and G. N. Kraev, Methodological Guidelines for the Analysis of Emission Fluxes from Soils of Settlements in the Tundra Zone (Izd. Tsentr Probl. Ekol. Prod. Lesov Ross. Akad. Nauk, Moscow, 2015) [in Russian].

    Google Scholar 

  11. D. V. Karelin, O. E. Sukhoveeva, A. N. Zolotukhin, V. N. Lunin, and G. S. Kust, “Modern research and monitoring of the carbon balance at the Kursk Biosphere Station of the Institute of Geography, Russian Academy of Sciences, within the framework of the concept of the neutral balance of land degradation,” Vopr. Geogr., No. 152, 253–280 (2021).

  12. A. V. Kislov, Climate of Moscow in the Context of Global Warming (Mosk. Univ., Moscow, 2017) [in Russian].

    Google Scholar 

  13. A. V. Kislov, M. I. Varentsov, I. A. Gorlach, and L. I. Alekseeva, “The "heat island” of the Moscow agglomeration and the urban increase in global warming," Vestn. Mosk. Univ., Ser. 5: Geogr., 12–19 (2017).

  14. V. A. Kuznetsov, I. M. Ryzhova, and G. V. Stoma, “Transformation of forest ecosystems in Moscow megapolis under recreational impacts,” Eurasian Soil Sci. 52 (5), 584–592 (2019). https://doi.org/10.1134/S1064229319050065

    Article  Google Scholar 

  15. I. N. Kurganova, V. O. Lopes de Gerenyu, S. L. Ipp, V. V. Kaganov, D. A. Khoroshaev, D. I. Rukhovich, Yu. V. Sumin, N. D. Durmanov, and Ya. V. Kuzyakov, “Pilot carbon polygon in Russia: analysis of carbon stocks in soils and vegetation,” Pochvy Okruzh. Sreda 5 (2), e169 (2022). https://doi.org/10.31251/pos.v5i2.169

    Article  Google Scholar 

  16. H. E. Landsberg, The Urban Climate (New York, 1981).

    Google Scholar 

  17. N. V. Mozharova, S. A. Kulachkova, and Ya. I. Lebed’-Sharlevich, “Emission and sink of greenhouse gases in soils of Moscow,” Eurasian Soil Sci. 51 (3), 359–370 (2018). https://doi.org/10.1134/S1064229318030080

    Article  Google Scholar 

  18. V. D. Naumov, N. L. Povetkina, A. V. Lebedev, and A. V. Gemonov, “Estimation of the humus state of soddy-podzolic soils of the forest experimental dacha of the Russian State Agrarian University—Moscow Timiryazev Agricultural Academy,” Izv. Timiryazevsk. S-kh. Akad. 4, 5–18 (2019).

  19. N. P. Nevedrov, D. A. Sarzhanov, E. P. Protsenko, and I. I. Vasenev, “Seasonal dynamics of CO2 emission from Soils of Kursk,” Eurasian Soil Sci. 54 (1), 80–88 (2021). https://doi.org/10.1134/S1064229321010117

    Article  Google Scholar 

  20. T. V. Prokof’eva, M. I. Gerasimova, O. S. Bezuglova, K. A. Bakhmatova, A. A. Gol’eva, S. N. Gorbov, E. A. Zharikova, N. N. Matinyan, E. N. Nakvasina, and N. E. Sivtseva, “Inclusion of soils and soil-like bodies of urban territories into the Russian soil classification system,” Eurasian Soil Sci. 47 (10), 959–967 (2014). https://doi.org/10.1134/S1064229314100093

    Article  Google Scholar 

  21. T. V. Prokofyeva, I. A. Martynenko, and F. A. Ivannikov, “Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils,” Eurasian Soil Sci. 44 (5), 561–571 (2011).

    Article  Google Scholar 

  22. T. V. Prokof’eva, M. S. Rozanova, and V. O. Poputnikov, “Some features of soil organic matter in parks and adjacent residential areas of Moscow,” Eurasian Soil Sci. 46 (3), 273–283 (2013). https://doi.org/10.1134/S1064229313030071

    Article  Google Scholar 

  23. I. S. Prokhorov and S. Yu. Karev, “Features of the production of soil for landscaping and landscaping of the city of Moscow,” Agrochim. Vestn., No. 3, 21–25 (2012).

  24. D. A. Sarzhanov, V. I. Vasenev, Yu. L. Sotnikova, A. Tembo, I. I. Vasenev, and R. Valentini, “Short-term dynamics and spatial heterogeneity of CO2 emission from the soils of natural and urban ecosystems in the Central Chernozemic Region,” Eurasian Soil Sci. 48 (4), 416–424 (2015). https://doi.org/10.1134/S1064229315040092

    Article  Google Scholar 

  25. A. V. Smagin, N. A. Azovtseva, M. V. Smagina, A. L. Stepanov, A. D. Myagkova, and A. S. Kurbatova, “Criteria and methods to assess the ecological status of soils in relation to the landscaping of urban territories,” Eurasian Soil Sci. 39 (5), 539–551 (2006).

    Article  Google Scholar 

  26. A. V. Smagin and N. B. Sadovnikova, “Creation of soil-like constructions,” Eurasian Soil Sci. 48 (9), 981–990 (2015). https://doi.org/10.1134/S1064229315090100

    Article  Google Scholar 

  27. A. V. Smagin, S. A. Shoba, and O. A. Makarov, Ecological Estimation of Soil Resources and Technology of Their Reproduction on the Example of Moscow (Mosk. Univ., Moscow, 2008) [in Russian].

    Google Scholar 

  28. Decree of the President of the Russian Federation No. 76 dated February 8, 2021 “On Measures to Implement the State Scientific and Technical Policy in the Field of Environmental Development of the Russian Federation and Climate Change”.

  29. Decree of the President of the Russian Federation No. 296-FZ dated July 2, 2021 “On Limiting Greenhouse Gas Emissions”.

  30. F. Aram, E. Solgi, E. H. García, A. Mosavi, and A. R. Várkonyi-Kóczy, “The cooling effect of large-scale urban parks on surrounding area thermal comfort,” Energies (Basel) 12, 3904 (2019). https://doi.org/10.3390/en12203904

    Article  Google Scholar 

  31. W. Bandaranayake, Y. Qian, W. J. Parton, D. S. Ojima, and R. Follett, “Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model,” Agron. J. 95 (3), 558–563 (2003). https://doi.org/10.2134/agronj2003.0558

    Article  Google Scholar 

  32. S. A. Benz, P. Bayer, F. M. Goettsche, F. S. Olesen, and P. Blum, “Linking surface urban heat islands with groundwater temperatures,” Environ. Sci. Technol. 50, 70–78 (2016). https://doi.org/10.1021/acs.est.5b03672

    Article  Google Scholar 

  33. C. R. Chang, M. H. Li, and S. D. Chang, “A preliminary study on the local cool-island intensity of Taipei city parks,” Landscape Urban Plann. 80, 386–395 (2007). https://doi.org/10.1016/j.landurbplan.2006.09.005

    Article  Google Scholar 

  34. G. Churkina, “The role of urbanization in the global carbon cycle,” Front. Ecol. Evol. 3, 144 (2016). https://doi.org/10.3389/FEVO.2015.00144/BIBTEX

    Article  Google Scholar 

  35. Y. Chen and N. H. Wong, “Thermal benefits of city parks,” Energy Build. 38, 105–120 (2006). https://doi.org/10.1016/j.enbuild.2005.04.003

    Article  Google Scholar 

  36. S. M. Decina, L. R. Hutyra, C. K. Gately, J. M. Getson, A. B. Reinmann, A. G. Short Gianotti, and P. H. Templer, “Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area,” Environ. Pollut. 212, 433–439 (2016). https://doi.org/10.1016/j.envpol.2016.01.012

    Article  Google Scholar 

  37. S. Demina, V. Vasenev, K. Ivashchenko, N. Ananyeva, V. Plyushchikov, R. Hajiaghayeva, and E. Dovletyarova, “Microbial properties of urban soils with different land-use history in New Moscow,” Soil Sci. 183, 132–140 (2018). https://doi.org/10.1097/SS.0000000000000240

    Article  Google Scholar 

  38. V. Garbero, M. Milelli, E. Bucchignani, P. Mercogliano, M. Varentsov, and I. Rozinkina, “Evaluating the urban canopy scheme TERRA_URB in the COSMO model for selected European cities,” Atmosphere (Basel) 12, 237 (2021). https://doi.org/10.3390/atmos12020237

    Article  Google Scholar 

  39. O. Goncharova, G. Matyshak, M. Udovenko, O. Semenyuk, H. Epstein, and A. Bobrik, “Temporal dynamics, drivers, and components of soil respiration in urban forest ecosystems,” Catena, (2020). https://doi.org/10.1016/j.catena.2019.104299

  40. O. Y. Goncharova, G. V. Matyshak, M. M. Udovenko, A. A. Bobrik, and O. V. Semenyuk, Seasonal and Annual Variations in Soil Respiration of the Artificial Landscapes (Moscow Botanical Garden) (Springer Geography, 2019). https://doi.org/10.1007/978-3-319-89602-1_15

  41. L. Hao, X. Huang, M. Qin, Y. Liu, W. Li, and G. Sun, “Ecohydrological processes explain urban dry island effects in a wet region, Southern Chin,” Water Resour. Res. 54, 6757–6771 (2018). https://doi.org/10.1029/2018WR023002

    Article  Google Scholar 

  42. A. C. Hill, J. Barba, J. Hom, and R. Vargas, “Patterns and drivers of multi-annual CO2 emissions within a temperate suburban neighborhood,” Biogeochemistry 152, 35–50 (2021).

    Article  Google Scholar 

  43. K. Ivashchenko, N. Ananyeva, V. Vasenev, S. Sushko, A. Seleznyova, and V. Kudeyarov, “Microbial C-availability and organic matter decomposition in urban soils of megapolis depend on functional zoning,” Soil Environ. 38, 31–41 (2019). https://doi.org/10.25252/SE/19/61524

    Article  Google Scholar 

  44. K. Ivashchenko, E. Lepore, V. Vasenev, N. Ananyeva, S. Demina, F. Khabibullina, I. Vaseneva, A. Selezneva, A. Dolgikh, S. Sushko, S. Marinari, and E. Dovletyarova, “Assessing soil-like materials for ecosystem services provided by constructed technosols,” Land 10, (2021). https://doi.org/10.3390/land10111185

  45. M. Jin, R. Sun, X. Yang, M. Yan, and L. Chen, “Remote sensing-based morphological analysis of core city growth across the globe,” Cities 131, (2022). https://doi.org/10.1016/j.cities.2022.103982

  46. J. P. Kaye, I. C. Burke, A. R. Mosier, and J. P. Guerschman, “Methane and nitrous oxide fluxes from urban soils to the atmosphere,” Ecol. Appl. 14, 975–981 (2004). https://doi.org/10.1890/03-5115

    Article  Google Scholar 

  47. Z. Liu, C. He, Y. Zhou, and J. Wu, “How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion,” Landscape Ecol. 29, 763–771 (2014). https://doi.org/10.1007/s10980-014-0034-y

    Article  Google Scholar 

  48. S. J. Livesley, B. J. Dougherty, A. J. Smith, D. Navaud, L. J. Wylie, and S. K. Arndt, “Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in urban garden systems: impact of irrigation, fertiliser and mulch,” Urban Ecosyst. 13, 273–293 (2010). https://doi.org/10.1007/s11252-009-0119-6

    Article  Google Scholar 

  49. M. A. Lokoshchenko, “Urban heat island and urban dry island in Moscow and their centennial changes,” J. Appl. Meteorol. Climatol. 56, 2729–2745 (2017). https://doi.org/10.1175/JAMC-D-16-0383.1

    Article  Google Scholar 

  50. M. A. Lokoshchenko and I. A. Korneva, “Underground urban heat island below Moscow city,” Urban Clim. 13, 002 (2015). https://doi.org/10.1016/j.uclim.2015.04.002

  51. K. Lorenz and R. Lal, “Biogeochemical C and N cycles in urban soils,” Environ. Int. 35, 006 (2009). https://doi.org/10.1016/j.envint.2008.05.006

  52. K. Lorenz and R. Lal, “Managing soil carbon stocks to enhance the resilience of urban ecosystems,” Carbon Manage. 6, 35–50 (2015). https://doi.org/10.1080/17583004.2015.1071182

    Article  Google Scholar 

  53. N. Meili, A. Paschalis, G. Manoli, and S. Fatichi, “Diurnal and seasonal patterns of global urban dry islands,” Environ. Res. Lett. 17, 68f8 (2022). https://doi.org/10.1088/1748-9326/ac68f8

  54. D. Moran, K. Kanemoto, M. Jiborn, R. Wood, J. Tobben, and K. C. Seto, “Carbon footprints of 13 000 cities,” Environ. Res. Lett. 13, 064041 (2018). https://doi.org/10.1088/1748-9326/aac72a

    Article  Google Scholar 

  55. D. J. Nowak and D. E. Crane, “Carbon storage and sequestration by urban trees in the USA,” Environ. Pollut. 116, 381–389 (2002). https://doi.org/10.1016/S0269-7491(01)00214-7

    Article  Google Scholar 

  56. T. R. Oke, “The energetic basis of the urban heat island,” Q. J. Royal Meteorol. Soc. 108, 5502 (1982). https://doi.org/10.1002/qj.49710845502

    Article  Google Scholar 

  57. T. R. Oke, G. Mills, A. Christen, and J. A. Voogt, Urban Climates (Cambridge University Press, Cambridge, 2017), p. 519. https://doi.org/10.1017/9781139016476

  58. D. E. Pataki, R. J. Alig, A. S. Fung, N. E. Golubiewski, C. A. Kennedy, E. G. Mcpherson, D. J. Nowak, R. V. Pouyat, and P. Romero Lankao, “Urban ecosystems and the North American carbon cycle,” Global Change Biol. 12, 2092–2102 (2006). https://doi.org/10.1111/j.1365-2486.2006.01242.x

    Article  Google Scholar 

  59. H. O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama, IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, New York, 2022), p. 3056. https://doi.org/10.1017/9781009325844

  60. Y. L. Qian, W. Bandaranayake, W. J. Parton, B. Mecham, M. A. Harivandi, and A. R. Mosier, “Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics: the CENTURY model simulation,” J. Environ. Qual. 32, 1694–1700 (2003). https://doi.org/10.2134/jeq2003.1694

    Article  Google Scholar 

  61. S. Richter, D. Haase, K. Thestorf, and M. Makki, “Carbon pools of Berlin, Germany: organic carbon in soils and aboveground in trees,” Urban For. Urban Greening 54, (2020). https://doi.org/10.1016/j.ufug.2020.126777

  62. A. M. Rizwan, L. Y. C. Dennis, and C. Liu, “A review on the generation, determination and mitigation of Urban Heat Island,” J. Environ. Sci. 20, 120–128 (2008). https://doi.org/10.1016/S1001-0742(08)60019-4

    Article  Google Scholar 

  63. B. Rockel, A. Will, and A. Hense, “The regional climate model COSMO-CLM (CCLM),” Meteorol. Z. 17, 347–348 (2008). https://doi.org/10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  64. O. N. Romzaykina, V. I. Vasenev, A. Paltseva, Y. V. Kuzyakov, A. Neaman, and E. A. Dovletyarova, “Assessing and mapping urban soils as geochemical barriers for contamination by heavy metal(loid)s in Moscow megapolis,” J. Environ. Qual. 50, 22–37 (2021). https://doi.org/10.1002/jeq2.20142

    Article  Google Scholar 

  65. A. Selhorst and R. Lal, “Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States,” Environ. Manage. 51, 198–208 (2013). https://doi.org/10.1007/s00267-012-9967-6

    Article  Google Scholar 

  66. R. C. Sharma, R. Tateishi, K. Hara, S. Gharechelou, and K. Iizuka, “Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data,” Int. J. Digital Earth 9, 1004–1020 (2016). https://doi.org/10.1080/17538947.2016.1168879

    Article  Google Scholar 

  67. A. S. Shchepeleva, V. I. Vasenev, I. M. Mazirov, I. I. Vasenev, I. S. Prokhorov, and D. D. Gosse, “Changes of soil organic carbon stocks and CO2 emissions at the early stages of urban turf grasses’ development,” Urban Ecosyst. 20, 309–321 (2017). https://doi.org/10.1007/s11252-016-0594-5

    Article  Google Scholar 

  68. A. V. Smagin, N. B. Sadovnikova, V. I. Vasenev, and M. V. Smagina, “Biodegradation of some organic materials in soils and soil constructions: experiments, modeling and prevention,” Materials (Basel) 11, 1889 (2018). https://doi.org/10.3390/ma11101889

    Article  Google Scholar 

  69. S. Sushko, N. Ananyeva, K. Ivashchenko, V. Vasenev, and V. Kudeyarov, “Soil CO2 emission, microbial biomass, and microbial respiration of woody and grassy areas in Moscow (Russia),” J. Soils Sediments 19, 3217–3225 (2019). https://doi.org/10.1007/s11368-018-2151-8

    Article  Google Scholar 

  70. H. Upmanis, I. Eliasson, and S. Lindqvist, “The influence of green areas on nocturnal temperatures in a high latitude city (Goteborg, Sweden),” Int. J. Climatol. 18, 681–700 (1998). https://doi.org/10.1002/(SICI)1097-0088(199805)18:6<681::AID-JOC289>3.0.CO;2-L

    Article  Google Scholar 

  71. M. Varentsov, T. Samsonov, and M. Demuzere, “Impact of urban canopy parameters on a megacity’s modelled thermal environment,” Atmosphere (Basel) 11, 1349 (2020). https://doi.org/10.3390/atmos11121349

    Article  Google Scholar 

  72. M. Varentsov, H. Wouters, V. Platonov, and P. Konstantinov, “Megacity-induced mesoclimatic effects in the lower atmosphere: a modeling study for multiple summers over Moscow, Russia,” Atmosphere (Basel) 9, 0050 (2018). https://doi.org/10.3390/atmos9020050

  73. S. A. Varentsova and M. I. Varentsov, “A new approach to study the long-term urban heat island evolution using time-dependent spectroscopy,” Urban Clim. 40, 1026 (2021). https://doi.org/10.1016/j.uclim.2021.101026

    Article  Google Scholar 

  74. V. Vasenev and Y. Kuzyakov, “Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors,” Land Degrad. Dev. 29, 1607–1622 (2018). https://doi.org/10.1002/ldr.2944

    Article  Google Scholar 

  75. V. I. Vasenev, S. Castaldi, M. M. Vizirskaya, N. D. Ananyeva, A. S. Shchepeleva, I. M. Mazirov, K. V. Ivashchenko, R. Valentini, and I. I. Vasenev, Urban Soil Respiration and Its Autotrophic and Heterotrophic Components Compared to Adjacent Forest and Cropland within the Moscow Megapolis (Springer Geography, 2018), pp. 18–35. https://doi.org/10.1007/978-3-319-70557-6_4

  76. V. I. Vasenev, A. V. Smagin, N. D. Ananyeva, K. V. Ivashchenko, E. G. Gavrilenko, T. V. Prokofeva, A. Paltseva, J. J. Stoorvogel, D. D. Gosse, and R. Valentini, “Urban soil’s functions: monitoring, assessment, and management,” in Adaptive Soil Management: From Theory to Practices (2017), pp. 359–409. https://doi.org/10.1007/978-981-10-3638-5

  77. V. Vasenev, M. Varentsov, P. Konstantinov, O. Romzaykina, I. Kanareykina, and Y. Dvornikov, “Projecting urban heat island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis,” Sci. Total Environ. 786, 147457 (2021). https://doi.org/10.1016/j.scitotenv.2021.147457

    Article  Google Scholar 

  78. J. A. Voogt and T. R. Oke, “Thermal remote sensing of urban climates,” Remote Sens. Environ. 86, 370–384 (2003). https://doi.org/10.1016/S0034-4257(03)00079-8

    Article  Google Scholar 

  79. L. F. Weissert, J. A. Salmond, and L. Schwendenmann, “Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types,” Geoderma 271, 80–90 (2016). https://doi.org/10.1016/j.geoderma.2016.02.014

    Article  Google Scholar 

  80. H. Wouters, M. Demuzere, U. Blahak, K. Fortuniak, B. Maiheu, and J. Camps, “The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian summer,” Geosci. Model Dev. 9, 3027–3054 (2016). https://doi.org/10.5194/gmd-9-3027-2016

    Article  Google Scholar 

  81. EGM-5 Portable CO2 Gas Analyzer. Operation Manual. Version 1.06. (PP System, 2018).

Download references

Funding

Monitoring of the CO2 emission and microclimatic parameters was supported by the Russian Foundation for Basic Research, grant no. 19-29-05187. Microclimatic modeling and monitoring were supported by the Russian Science Foundation, project no. 19-77-300-12. Data analysis and preparation of the publication were carried out within the framework of the RUDN University grant support system for scientific projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasenev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasenev, V.I., Varentsov, M.I., Sarzhanov, D.A. et al. Influence of Meso- and Microclimatic Conditions on the CO2 Emission from Soils of the Urban Green Infrastructure of the Moscow Metropolis. Eurasian Soil Sc. 56, 1257–1269 (2023). https://doi.org/10.1134/S106422932360121X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932360121X

Keywords:

Navigation