Skip to main content
Log in

Effectiveness of Biochar, Organic Matter and Mycorrhiza to Improve Soil Hydrophysical Properties and Water Relations of Soybean under Arid Soil Conditions

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A field experiment was conducted to investigate the effect of biochar, organic matter (hundz soil) and mycorrhiza on soil hydrophysical properties, irrigation water applied and water productivity of soybean crop in arid soils. The treatments included eight practices i.e., control (C), 15 t ha–1 biochar (B), 15 t ha–1 hundz soil (H), 2.5 kg ha–1 mycorrhiza (M), 15 t ha–1 B + 2.5 kg ha–1 M (B + M), 15 t ha–1 H + 2.5 kg ha–1 M (H + M), 7.5 t ha–1 B + 7.5 kg ha–1 H (50% B + 50% H) and 7.5 t ha–1 B + 7.5 t ha–1 H + 2.5 kg ha–1 (50% B + 50% H + M). The results observed that there is a significant decrease in soil bulk density at the mixture of B, H and M. Also, a significant increase in soil porosity and hydraulic conductivity were recorded. The reduction of actual evapotranspiration (ETa) and irrigation water applied (IWA) by the treatments could be set in the descending order: 50% B + 50% H + M > 50% B + 50% H > H + M > B + M > H > B > M > C. The highest relative decrease (mean of both seasons) of ETa and IWA were 25.98% and 23.46%, respectively at 50% B + 50% H + M treatment. Also, crop water productivity and irrigation water productivity were significantly (P ≤ 0.05) increased as compared to control. Plant height, seed index, seed yield, portion content and oil content were significantly (P ≤ 0.05) increased as a result applying of B, H and M. The results imply that the mixture of biochar, hundz soil and treated soybean seed with mycorrhiza are considered a valuable approach to improve soil hydrophysical properties, water productivity and soybean yield in arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. Abedi, A. Alemzadeh, and S. A. Kazemeini, “Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat,” Aust. J. Crop Sci. 4 (6), 384–389 (2010). https://search.informit.org/doi/ 10.3316/informit.414808187764069

    Google Scholar 

  2. A. A. Abo-Baker, “Successive application impact of some organic amendments combined with acid producing bacteria on soil properties, NPK availability and uptake by some plants,” Int. J. Curr. Microbiol. Appl. Sci. 6, 2394–2413 (2017). https://doi.org/10.20546/ijcmas.2017.603.274

    Article  Google Scholar 

  3. V. Abrol, M. Ben-Hur, F. G. Verheijen, J. J. Keizer, M. A. Martins, H. Tenaw, L. Tchehansky, and E. R. Graber, “Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment,” J. Soils Sediments 16 (12), 2709–2719 (2016). https://doi.org/10.1007/s11368-016-1448-8

    Article  Google Scholar 

  4. T. M. Agbede, A. O. Adekiya, and J. S. Ogeh, “Effects of organic fertilizers on yam productivity and some soil properties of a nutrient depleted tropical Alfisol,” Arch. Agron. Soil Sci. 59 (4–6), 803–822 (2013). https://doi.org/10.1080/03650340.2012.683423

    Article  Google Scholar 

  5. G. H. D. Agbna, S. Dongli, L. Zhipeng, N. A. Elshaikh, S. Guangcheng, and L. C. Timm, “Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato,” Sci. Hortic. 222, 90–101 (2017). https://doi.org/10.1016/j.scienta.2017.05.004

    Article  Google Scholar 

  6. K. Ahmad, K. Wajid, Z. I. Khan, I. Ugulu, H. Memoona, M. Sana, and M. Sher, “Evaluation of potential toxic metals accumulation in wheat irrigated with wastewater,” Bull. Environ. Contam. Toxicol. 102 (6), 822–828 (2019). https://doi.org/10.1007/s00128-019-02605-1

    Article  Google Scholar 

  7. A. G. Alghamdi, A. Alkhasha, and H. M. Ibrahim, “Effect of biochar particle size on water retention and availability in a sandy loam soil,” J. Saudi Chem. Soc. 24, 1042–1050 (2020). https://doi.org/10.1016/j.jscs.2020.11.003

    Article  Google Scholar 

  8. S. Ali, A. Jan, A. Sohail, A. Khan, M. I., Khan, J. Zhang, and I. Daur, “Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions,” Agric. Water Manage. 210, 88–95 (2018). https://doi.org/10.1016/j.agwat.2018.08.009

    Article  Google Scholar 

  9. N. Ameloot, E. R. Graber, F. G. Verheijen, and S. De Neve, “Interactions between biochar stability and soil organisms: review and research needs” Eur. J. Soil Sci. 64 (4), 379–390 (2013). https://doi.org/10.1111/ejss.12064

    Article  Google Scholar 

  10. R. Anderson, D. Keshwani, A. Guru, H. Yan, S. Irmak, and J. Subbiah, “An integrated modeling framework for crop and biofuel systems using the DSSAT and GREET models,” Environ. Modell. Software 108, 40–50 (2018). https:// doi. https://doi.org/10.1016/j.envsoft.2018.07.004

  11. F. Anwar, G. M. Kamal, F. Nadeem, and G. Shabir, “Variations of quality characteristics among oils of different soybean varieties,” J. King Saud Univ., Sci. 28, 332–338 (2016). https://doi.org/10.1016/j.jksus.2015.10.001

    Article  Google Scholar 

  12. AOCS, Official Methods and Recommended Practices of the American Oil Chemists Society, 5th Ed. (AOCS Press, Champaign, 2009), p. 39.

    Google Scholar 

  13. M. A. Ashour, S. T. El Attar, Y. M. Rafaat, and M. N. Mohamed, “Water resources management in Egypt,” J. Eng. Sci. Assiut Univ. 37, 269–279 (2009). https://doi.org/10.21608/JESAUN.2009.121215

    Article  Google Scholar 

  14. A. S. Basso E. M. Ferrando, D. A. Laird, R. Horton, and M. Westgate, “Assessing potential of biochar for increasing water-holding capacity of sandy soils,” Bioenergy 5 (2), 132–143 (2012). https://doi.org/10.1111/gcbb.12026

    Article  Google Scholar 

  15. G. R. Blake and K. H. Hartge, Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute (Madison, 1986), pp. 363–375 (1986). https://doi.org/10.2136/sssabookser5.1.2ed.c13

  16. H. Blanco-Canqui and R. Lal, “Crop residue removal impacts on soil productivity and environmental quality,” Crit. Rev. Plant Sci. 28, 139–163 (2017). https://doi.org/10.1080/07352680902776507

    Article  Google Scholar 

  17. M. G. Bos, “Summary of ICID definitions of irrigation efficiency,” ICID Bulletin 34, 28–31 (1985).

    Google Scholar 

  18. M. Choudhary, V. S. Meena, S. C. Panday, T. Mondal, R. P. Yadav, P. K. Mishra, J. K. Bisht, and A. Pattanayak, “Long-term effects of organic manure and inorganic fertilization on biological soil quality indicators of soybean-wheat rotation in the Indian mid-Himalaya,” Appl. Soil Ecol. 157, 103745 (2021). https://doi.org/10.1016/j.apsoil.2020.103754

    Article  Google Scholar 

  19. L. Dong, W. Zhang, Y. Xiong, J. Zou, Q. Huang, X. Xu, and G. Huang, “Impact of short-term organic amendments incorporation on soil structure and hydrology in semiarid agricultural lands,” Int. Soil Water Conserv. Res. 10 (3), 457–469 (2022). https://doi.org/10.1016/j.iswcr.2021.10.003

    Article  Google Scholar 

  20. R. Duponnois, L. Ouahmane, A. Kane, J. Thioulouse, M. Hafidi, and A. Boumezzough, “Nurse shrubs increased the early growth of Cupressus seedlings by enhancing belowground mutualism and soil microbial activity,” Soil Biol. Biochem. 43, 2160–2168 (2011). https://doi.org/10.1016/j.soilbio.2011.06.020.

  21. A. El Sabagh, S. I. Mohammad, U. Akihiro, S. Hirofumi, and B. Celaleddin “Increasing reproductive stage tolerance to salinity stress in soybean,” Int. J. Agric. Crop Sci. 8 (5), 738–745 (2015).

    Google Scholar 

  22. S. Fahmy, M. Ezzat, A. Shalby, H. Kandil, M. Sharkawy, M. Allam, I. Assiouty, and A. Tczap, Water Policy Review and Integration Study, Report No. 65 (Ministry of Water Resources and Irrigation, Cairo, 2002).

  23. M. Falkenmark and G. Lindh, Water for a Starving World (Routledge, Abingdon, 2019).

    Book  Google Scholar 

  24. G. W. Gee and D. Or, “Particle size analysis,” in Methods of Soil Analysis, Part 4: Physical Methods, Ed. by D. L. Sparks (Madison, 2002), pp. 255–293.

  25. P. H. Graham and C. P. Vance, “Legumes: importance and constraints to greater use,” Plant Physiol. 131, 872–877 (2003). https://doi.org/10.1104/pp.017004

    Article  Google Scholar 

  26. N. Habashy and M. S. A. Ewees, “Improving productivity of zucchini squash grown under moderately saline soil using gypsum, organo-stimulants and AM-fungi,” J. Appl. Sci. Res. 7 (12), 2112–2126 (2011).

    Google Scholar 

  27. V. Hansen, H. H. Nielsen, C. T. Petersen, T. N. Mikkelsen, and D. M. Stöver, “Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types,” Soil Tillage Res. 161, 1–9 (2016). https://doi.org/10.1016/j.still.2016.03.002

    Article  Google Scholar 

  28. H. M. S. K. Herath, A. M. Camps, and M. Hedley, “Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol,” Geoderma 209–210, 188–197 (2013). https://doi.org/10.1016/j.geoderma.2013.06.016

    Article  Google Scholar 

  29. O. W. Israelsen and V. E. Hansen, Irrigation Principles and Practices (John Willey and Sons. Inc., New York, 1962). https://doi.org/10.2136/sssaj1963.03615995002700020010x

  30. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Leg- ends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

  31. A. Jamiołkowska, A. Ksiezniak, A. Gałazka, B. Hetman, M. Kopacki, and B. Skwaryło-Bednarz, “Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a review,” Int. Agrophys. 32 (1), 133–140 (2018). https://doi.org/10.1515/intag-2016-0090

    Article  Google Scholar 

  32. S. R. Joshi, G. D. Sharma, and R. R. Mishra, “Microbial enzyme activities related to litter decomposition near a highway in a sub-tropical forest of northeast India,” Soil Biol. Biochem. 25, 1763–1770 (1993). https://doi.org/10.1016/0038-0717(93)90181-A

    Article  Google Scholar 

  33. I. Jośko, P. Oleszczuk, J. Pranagal, J. Lehmann, B. Xing, and G. Cornelissen, “Effect of biochar activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants,” Ecol. Eng. 60, 50–59 (2013). https://doi.org/10.1016/j.ecoleng.2013.07.064

    Article  Google Scholar 

  34. S. Khaim, M. A. H. Chowdhury, and B. K. Saha, “Organic and inorganic fertilization on the yield and quality of soybean,” J. Bangladesh Agric. Univ. 11 (1), 23–28 (2013). https://www.banglajol.info/index.php/JBAU/ article/view/18199.

    Article  Google Scholar 

  35. Z. I. Khan, H. Safdar, K. Ahmad, K. Wajid, H. Bashir, I. Ugulu, and Y. Dogan, “Copper bioaccumulation and translocation in forages grown in soil irrigated with sewage water,” Pak. J. Bot. 52 (1), 111–119 (2020). https://doi.org/10.30848/PJB2020-1(12)

    Article  Google Scholar 

  36. A. Klute, Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd. Ed. (American Society of Agronomy, Madison, 1986).

  37. A. Klute and C. Dirksen, “Hydraulic conductivity and diffusivity: laboratory methods,” in Methods of Soil Analysis, Ed. by A. Klute (Am. Soc. of Agron. Publications, Madison, 1986), Part 1, pp. 687–734.

  38. N. Kranz, R. A. McLaughlin, A. Johnson, G. Miller, and J. L. Heitman, “The effects of compost incorporation on soil physical properties in urban soils–a concise review,” J. Environ. Manage. 261, 110209 (2020). https://doi.org/10.1016/j.jenvman.2020.110209

  39. T. J. Lim, K. Spokas, G. Feyereisen, and J. Novak, “Predicting the impact of biochar additions on soil hydraulic properties,” Chemosphere 142, 136–144 (2016). https://doi.org/10.1016/j.chemosphere.2015.06.069

    Article  Google Scholar 

  40. S. G. Lu, F. F. Sun, and Y. T. Zong, “Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol),” Catena 114, 37–44 (2014). https://doi.org/10.1016/j.catena.2013.10.014

    Article  Google Scholar 

  41. V. Martinsen, V. Alling, N. L. Nurida, J. Mulder, S. E. Hale, C. Ritz, D. W. Rutherford, A. Heikens, G. D. Breedveld, and G. Cornelissen, “pH effects of the addition of three biochars to acidic Indonesian mineral soils,” Soil Sci. Plant Nutr. 61 (5), 821–834 (2015). https://doi.org/10.1080/00380768.2015.1052985

    Article  Google Scholar 

  42. A. M. Miglierinaa, J. O. Iglesiasa, G. C. Laurenta, R. A. Rodrigueza, M. E. Ayastuya, and J. C. Lobartinia, “Application of compost to different texture soils: effect on soil properties and productivity of lettuce crop,” Acta Hortic. 10, 17660 (2015).

  43. O. I. Nicholas O. B. Olubukola, C. Xavier, and T. Baldwyn, “Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress,” Microbiol. Res. 242, 126640 (2021). https://doi.org/10.1016/j.micres.2020.126640

    Article  Google Scholar 

  44. A. M. O’Neal, “A key for evaluating soil permeability by means of certain field clues,” Soil Sci. Soc. Am. J. 16, 312–315 (1952). https://doi.org/10.2136/sssaj1952.03615995001600030024x

    Article  Google Scholar 

  45. L. Ouyang, W. J. Tang, and R. Zhang, “Effects of biochar amendment on soil aggregates and hydraulic properties,” J. Soil Sci. Plant Nutr. 13, 991–1002 (2013). https://doi.org/10.4067/S0718-95162013005000078

    Article  Google Scholar 

  46. A. L. Page, R. H. Miller, and D. R. Keeney, Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (American Society of Agronomy, Soil Science Society of America, 1982).

  47. M. Parihar, A. Rakshit, V. S. Meena, V. K. Gupta, K. Rana, and M. Choudhary, “The potential of arbuscular mycorrhizal fungi in C cycling: a review,” Arch. Microbiol. 202, 581–1596 (2020). https://doi. https://doi.org/10.1007/s00203-020-01915-x

  48. R. Prasad, D. Bhola, K. Akdi, C. Cruz, K. V. S. S. Sairam, N. Tuteja, and A. Varma, “Introduction to mycorrhiza: historical development,” in Mycorrhiza - Function, Diversity, State of the Art (Springer, Cham, 2017), pp. 1–7. https://doi.org/10.1007/978-3-319-53064-2_1

  49. M. Qaswar, H. Jing, W. Ahmed, L. Dongchu, L. Shujun, Z. Lu, and Z. Huimin, “Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil,” Soil Tillage Res. 198, 104569 (2020). https://doi.org/10.1016/j.still.2019.104569

    Article  Google Scholar 

  50. M. F. Qayyum, G. Haider, M. A. Raza, A. K. S. H. Mohamed, M. Rizwan, M. A. El- Sheikh, M. N. Alyemeni, and S. Ali, “Straw-based biochar mediated potassium availability and increased growth and yield of cotton (Gossypium hirsutum L.),” J. Saudi Chem. 24, 963–973 (2020). https:// doi.org/10.1016/j.jscs.2020.10.004

  51. A. Rahimi, S. S. Moghaddam M., Ghiyasi, S. Heydarzadeh, K. Ghazizadeh, and J. Popović-Djordjević, “The influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian Cephalaria (Cephalaria syriaca L.),”  Agriculture 9 (6), (2019). 122. https://doi.org/10.3390/agriculture9060122

  52. E. Y. Rizhiya, N. P., Buchkina, I. M., Mukhina, A. S. Belinets, and E. V. Balashov, “Effect of biochar on the properties of loamy sand Spodosol soil samples with different fertility levels: a laboratory experiment,” Eurasian Soil Sci. 48 (2), 192–200 (2015). https://doi.org/10.1134/S1064229314120084

  53. Y. Shenglan, L. Tiancheng, and Y. Niu, “Effects of organic fertilizer on water use, photosynthetic characteristics, and fruit quality of pear jujube in northern Shaanxi,” Open Chem. 18, 537–545 (2020). https://doi.org/10.1515/chem-2020-0060

    Article  Google Scholar 

  54. V. Simanský, “Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol,” Acta Fytotech. Zootech. 19, 129–138 (2016). https://doi.org/10.15414/afz.2016.19.04.129-138

    Article  Google Scholar 

  55. L. Toková, D. Igaz, J. Horák, and E. Aydin, “Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a Silty Loam Haplic Luvisol,” Agronomy 10, 1005 (2020). https://doi.org/10.3390/agronomy10071005

    Article  Google Scholar 

  56. M. M. Turky, M. M. El-Sayed, M. Y. Awad, and A. S. A. Abdel-Mawgoud, “Use natural soil amendments in improving hydro-physical properties and wheat crop production of a new reclaimed area, Sohag Governorate, Egypt,” Arch. Agric. Sci. J. 13 (3), 214–230 (2020). https:// doi. https://doi.org/10.21608/AASJ.2020.132456

  57. K. Wajid, K. Ahmad, Z. I. Khan, M. Nadeem, H. Bashir, F. Chen, and I. Ugulu, “Effect of organic manure and mineral fertilizers on bioaccumulation and translocation of trace metals in maize,” Bull. Environ. Contam. Toxicol. 104 (5), 649–657 (2020). https://doi.org/10.1007/s00128-020-02841-w

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to thank and appreciate Soils and Water Department, Faculty of Agriculture, Al-Azhar University in Assiut and Cairo and Agronomy Department, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt for support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Abdeen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL-Sayed, M.M., Mahdy, A.Y., Gebreel, M. et al. Effectiveness of Biochar, Organic Matter and Mycorrhiza to Improve Soil Hydrophysical Properties and Water Relations of Soybean under Arid Soil Conditions. Eurasian Soil Sc. 56, 1055–1066 (2023). https://doi.org/10.1134/S1064229323600276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600276

Keywords:

Navigation