Skip to main content
Log in

Dynamics of Soil Acidity, Structural–Aggregate State, and Carbon Stocks in Agro-Dark-Humus Podbels in the Postagrogenic Development

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Changes in the structural–aggregate state, acidity, and carbon stocks of dark-humus podbels (Luvic Albic Mollic Planosols (Epiloamic, Endoclayic, Aric)) during their postagrogenic development under unmanaged fallow were studied at the experimental station of the A.K. Chaika Federal Scientific Center of Agricultural Biotechnology of the Far East. Restoration of the aggregate state of the soil after its removal from agricultural use took place: the content of agronomically valuable aggregates increased and their weighted average diameter decreased in the former arable layer. In the course of vegetation restoration, soils were acidified. The most pronounced drop in pH took place in the 20-yr-old fallow soil with the appearance of woody plants. The content and stocks of carbon in the fallow soils tended to increase during the entire studied postagrogenic period. Carbon stocks in a layer of 0–25 cm reached their maximum by the 85th yr of the postagrogenic succession. However, the difference between carbon stocks in a layer of 0–50 cm in the 20- and 85-yr-old fallow soils was statistically insignificant. Bulk density of the plow layer in the cultivated soil reached 0.88 g/cm3. In the fallow soils, bulk density of the upper horizon varied within 0.67–0.79 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Z. S. Artem’eva, Organic Matter and Soil Granulometric System (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  2. M. L. Burdukovskii, V. I. Golov, and I. G. Kovshik, “Changes in the agrochemical properties of major arable soils in the south of the Far East of Russia under the impact of their long-term agricultural use,” Eurasian Soil Sci. 49 (10), 1174–1179 (2016). https://doi.org/10.1134/S1064229316100057

    Article  Google Scholar 

  3. M. L. Burdukovskii, V. I. Golov, P. A. Perepelkina, I. V. Kiseleva, and Ya. O. Timofeeva, “Agrogenic and postagrogenic changes in physical properties and carbon stocks in dark-humus podbels,” Eurasian Soil Sci. 54 (6), 943–950 (2021). https://doi.org/10.1134/S1064229321060041

    Article  Google Scholar 

  4. V. I. Golov, Cycle of Sulfur and Trace Elements in the Main Agroecosystems of the Far East (Dal’nauka, Vladivostok, 2004) [in Russian].

    Google Scholar 

  5. F. R. Zaidel’man, Podzol and Gley Formation (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  6. G. I. Ivanov, Soil Formation in the South of the Far East (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  7. Results of the All-Russian Agricultural Census 2016 (Statistika Rossii, Moscow, 2018) [in Russian].

  8. I. O. Kechaikina, A. G. Ryumin, and S. N. Chukov, “Postagrogenic transformation of organic matter in soddy-podzolic soils,” Eurasian Soil Sci. 44 (10), 1077 (2011). https://doi.org/10.1134/S1064229311100061

    Article  Google Scholar 

  9. N. M. Kostenkov and V. I. Oznobikhin, “Soils and soil resources in the southern Far East and their assessment,” Eurasian Soil Sci. 39 (5), 461–469 (2006). https://doi.org/10.1134/S1064229306050012

    Article  Google Scholar 

  10. I. V. Kuznetsova, P. I. Tikhonravova, and A. G. Bondarev, “Changes in the properties of cultivated gray forest soils after their abandoning,” Eurasian Soil Sci. 42 (9), 1062–1070 (2009). https://doi.org/10.1134/S1064229309090142

    Article  Google Scholar 

  11. A. A. Larionova, A. M. Ermolaev, V. I. Nikitishen, V. O. Lopes de Gerenyu, and I. V. Evdokimov, “Carbon budget in arable gray forest soils under different land use conditions,” Eurasian Soil Sci. 42 (12), 1364 (2009). https://doi.org/10.1134/S1064229309120060

    Article  Google Scholar 

  12. A. V. Litvinovich and I. A. Plylova, “Changes in acid-base properties of soddy-podzolic loamy soil during post-agrogenic evolution,” in Scientific Support for the Development of the Agro-Industrial Complex in the Conditions of Reform (St. Petersburg, 2009), pp. 160–164.

  13. D. I. Lyuri, S. V. Goryachkin, N. A. Karavaeva, E. A. Denisenko, and T. T. Nefedova, Dynamics of Agricultural Lands in Russia in the 20th Century and Post-Agrogenic Restoration of Vegetation and Soils (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  14. L. N. Purtova, N. M. Kostenkov, and L. N. Shchapova, “Assessing the humus status and CO2 production in soils of anthropogenic and agrogenic landscapes in southern regions of the Russian Far East,” Eurasian Soil Sci. 50 (1), 42–48 (2017). https://doi.org/10.1134/S1064229317010124

    Article  Google Scholar 

  15. I. M. Ryzhova, A. A. Erokhova, and M. A. Podvezennaya, “Dynamics and structure of carbon storage in the postagrogenic ecosystems of the southern taiga,” Eurasian Soil Sci. 47 (12), 1207–1215 (2014). https://doi.org/10.1134/S1064229314090117

    Article  Google Scholar 

  16. I. M. Ryzhova, V. M. Telesnina, and A. A. Sitnikova, “Dynamics of soil properties and carbon stocks structure in postagrogenic ecosystems of southern taiga during natural reforestation,” Eurasian Soil Sci. 53 (2), 240–252 (2020). https://doi.org/10.1134/S1064229320020106

    Article  Google Scholar 

  17. R. L. Teit, Soil Organic Matter: Biological and Ecological Aspects (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  18. V. M. Telesnina and M. A. Zhukov, “The influence of agricultural land use on the dynamics of biological cycling and soil properties in the course of postagrogenic succession (Kostroma oblast),” Eurasian Soil Sci. 52 (9), 1122–1136 (2019). https://doi.org/10.1134/S1064229319070135

    Article  Google Scholar 

  19. V. M. Telesnina, I. N. Kurganova, V. O. Lopes de Gerenyu, L. A. Ovsepyan, V. I. Lichko, A. M. Ermolaev, and D. M. Mirin, “Dynamics of soil properties and plant composition during postagrogenic evolution in different bioclimatic zones,” Eurasian Soil Sci. 50 (12), 1515–1534 (2017). https://doi.org/10.1134/S1064229317120109

    Article  Google Scholar 

  20. D. S. Fomin, I. A. Valdes-Korovkin, A. P. Golub, and A. V. Yudina, “Optimization of the analysis of the aggregate composition of soils by the method of automatic sieving,” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 96, 149–177 (2019). https://doi.org/10.19047/0136-1694-2019-96-149-177

    Article  Google Scholar 

  21. N. V. Khavkina, Humus Formation and Transformation of Organic Matter under Conditions of Variable Gley Soil Formation (Izd. Primorsk. Gos. S-kh. Akad., Ussuriysk, 2004) [in Russian].

    Google Scholar 

  22. Yu. I. Cheverdin and I. F. Porotikov, “Influence of anthropogenic factors on the reaction of the soil environment of chernozems,” Agrokhimiya, No. 8, 15–22 (2015).

    Google Scholar 

  23. E. V. Shein, Soil Physics Course (Mosk. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  24. C. Alcantara, T. Kuemmerle, A. V. Prishchepov, and V. C. Radeloff, “Mapping abandoned agriculture with multi-temporal MODIS satellite data,” Remote Sens. Environ. 124, 334–347 (2012). https://doi.org/10.1016/j.rse.2012.05.019

    Article  Google Scholar 

  25. M. H. Beare, M. L. Cabrera, P. F. Hendrix, and D. C. Coleman, “Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils,” Soil Sci. Soc. Am. J. 58, 787–795 (1994). https://doi.org/10.2136/sssaj1994.03615995005800030021x

    Article  Google Scholar 

  26. M. Burdukovskii, I. Kiseleva, P. Perepelkina, and Y. Kosheleva, “Impact of different fallow durations on soil aggregate structure and humus status parameters,” Soil Water Res. 15, 1–8 (2020). https://doi.org/10.17221/174/2018-SWR

    Article  Google Scholar 

  27. V. A. Cramer, R. J. Hobbs, and R. J. Standish, “What’s new about old fields? Land abandonment and ecosystem assembly,” Trends Ecol. Evol. 23, 104–112 (2008). https://doi.org/10.1016/j.tree.2007.10.005

    Article  Google Scholar 

  28. U. Falkengren-Grerup, D.-J. ten Brink, and J. Brunet, “Land use effects on soil N, P, C and pH persist over 40–80 yr of forest growth on agricultural soils,” For. Ecol. Manage. 225, 74–81 (2005). https://doi.org/10.1016/j.foreco.2005.12.027

    Article  Google Scholar 

  29. D. Hillel, Introduction to Environmental Soil Physic (Acad. Press, Amsterdam, 2003).

    Google Scholar 

  30. O. Kalinina, O. Chertov, A. V. Dolgikh, S. V. Goryachkin, D. I. Lyuri, S. Vormstein, and L. Giani, “Self restoration of postagrogenic Albeluvisols: soil development, carbon stocks and dynamics of carbon pools,” Geoderma 207–208, 221–233 (2013). https://doi.org/10.1016/j.geoderma.2013.05.019

    Article  Google Scholar 

  31. O. Kalinina, S. V. Goryachkin, N. A. Karavaeva, D. I. Lyuri, L. Najdenko, and L. Giani, “Self-restoration of post-agrogenic sandy soils in the southern taiga of Russia: soil development, nutrient status, and carbon dynamics,” Geoderma 152, 35–42 (2009). https://doi.org/10.1016/j.geoderma.2009.05.014

    Article  Google Scholar 

  32. O. Kalinina, S. V. Goryachkin, D. I. Lyuri, and L. Giani, “Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia,” Catena 129, 18–29 (2015). https://doi.org/10.1016/j.catena.2015.02.016

    Article  Google Scholar 

  33. I. Kurganova, V. Lopes de Gerenyu, J. Six, and Y. Kuzyakov, “Carbon cost of collective farming collapse in Russia,” Global Change Biol. 20, 938–947 (2014). https://doi.org/10.1111/gcb.12379

    Article  Google Scholar 

  34. I. N. Kurganova and V. O. Lopes de Gerenyu, “Assessment and prediction of changes in the reserves of organic carbon in abandoned soils of European Russia in 1990–2020,” Eurasian Soil Sci. 41, 1371–1377 (2008). https://doi.org/10.1134/S1064229308130048

    Article  Google Scholar 

  35. S. Li and X. Li, “Global understanding of farmland abandonment: a review and prospects,” J. Geogr. Sci. 27, 1123–1150 (2017). https://doi.org/10.1007/s11442-017-1426-0

    Article  Google Scholar 

  36. J. D. Liao, T. W. Boutton, and J. D. Jastrow, “Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland,” Soil Biol. Biochem. 38, 3184–3196 (2006). https://doi.org/10.1016/j.soilbio.2006.04.003

    Article  Google Scholar 

  37. Y. Lipiec and R. Hatano, “Quantification of compaction effects on soil physical properties and crop growth,” Geoderma 116, 107–136 (2003). https://doi.org/10.1016/S0016-7061(03)00097-1

    Article  Google Scholar 

  38. K. A. Nichols and M. A. Toro, “A whole soil stability index (WSSI) for evaluating soil aggregation,” Soil Tillage Res. 111, 99–104 (2011). https://doi.org/10.1016/j.still.2010.08.014

    Article  Google Scholar 

  39. C. Poeplau, A. Don, L. Vesterdal, J. Leifeld, B. van Wesemael, J. Schumacher, and A. Gensior, “Temporal dynamics of soil organic carbon after land use change in the temperate zone – carbon response functions as a model approach,” Global Change Biol. 17, 2415–2427 (2011). https://doi.org/10.1111/j.1365-2486.2011.02408.x

    Article  Google Scholar 

  40. W. M. Post and K. C. Kwon, “Soil carbon sequestration and land use change: processes and potential,” Global Change Biol. 6, 317–327 (2000). https://doi.org/10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  41. Ramankutty N., Foley J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992 // Global Biogeochem. Cycles. 1999. V. 13. P. 997–1027. https://doi.org/10.1029/1999GB900046

    Article  Google Scholar 

  42. V. Simansky, N. Pollakova, J. Jonczak, and M. Jankowski, “Which soil tillage is better in terms of the soil organic matter and soil structure changes?,” J. Cent. Eur. Agric. 17, 391–401 (2016). https://doi.org/10.5513/JCEA01/17.2.1720

    Article  Google Scholar 

  43. J. Six, H. Bossuyt, S. Degryze, and K. Denef, “A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics,” Soil Tillage Res. 79, 7–31 (2004). https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  44. J. M. Tisdall and J. M. Oades, “Organic matter and water-stable aggregates in soils,” Eur. J. Soil Sci. 33, 141–163 (1982). https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    Article  Google Scholar 

  45. C. A. Tormena, D. L. Karlen, S. Logsdon, and M. R. Cherubin, “Visual soil structure effects of tillage and corn stover harvest in Iowa,” Soil Sci. Soc. Am. J. 80, 720–726 (2016). https://doi.org/10.2136/sssaj2015.12.0425

    Article  Google Scholar 

  46. L. Vesterdal, E. Ritter, and P. Gundersen, “Change in soil organic carbon following afforestation of former arable land,” For. Ecol. Manage. 169, 137–147 (2002). https://doi.org/10.1016/S0378-1127(02)00304-3

    Article  Google Scholar 

  47. L. Wang, X. G. Li, J. Lv, T. Fu, Q. Ma, W. Song, Y. P. Wang, and F. M. Li, “Continuous plastic-film mulching increases soil aggregation but decreases soil pH in semiarid areas of China,” Soil Tillage Res. 167, 46–53 (2017). https://doi.org/10.1016/j.still.2016.11.004

    Article  Google Scholar 

  48. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, Rome, 2015).

Download references

Funding

This study was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project no. 121031000134-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Burdukovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdukovskii, M.L., Timofeeva, Y.O., Golov, V.I. et al. Dynamics of Soil Acidity, Structural–Aggregate State, and Carbon Stocks in Agro-Dark-Humus Podbels in the Postagrogenic Development. Eurasian Soil Sc. 55, 1733–1740 (2022). https://doi.org/10.1134/S1064229322700028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322700028

Keywords:

Navigation