Skip to main content
Log in

Impacts of Cropping Systems on Soil Aggregates and Associated Carbon and Nitrogen Storage in Four Entisols of Different Antecedent Carbon Levels

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The impact of cropping systems on soil aggregation and associated carbon (C) and nitrogen (N) stabilization in relation to soil’s antecedent C level has not been well addressed, which is essential for prioritization of agricultural soils for C and N sequestration. In this background, the present study investigated the influence of maize-wheat (MW) and soybean-wheat (SW) cropping systems and continuous fallow (CF) on soil aggregation and associated C and N storage in four soils of same type and texture (sandy loam textured Typic Ustorthents) but different antecedent C levels: a low-C soil (Soil 1, 5.6 g C kg–1), two medium-C soils (Soil 2, 9.0 g C kg–1 and Soil 3, 9.6 g C kg–1) and a high-C soil (Soil 4, 12.9 g C kg–1). While in low-C soil, MW outperformed the SW in increasing aggregate mean weight diameter (MWD) by 13% and C and N preservation capacities of macroaggregate fractions by 5–52%; in medium-C soils, the opposite occurred where SW showed 4–9% increased MWD and 8–76% increased C and N preservation capacity over MW. Contrarily in high-C soil, the two cropping systems behaved similarly; these decreased the aggregate MWD by 6–10% and the macroaggregate-preserved C and N by 8–39% compared to the CF. Changes in macroaggregate C and N storage were significantly related to bulk soil C and N levels (R2 = 0.65–0.85, p < 0.05). Conclusively, the selection of cropping systems to improve aggregate C and N storage must preconsider the antecedent soil C level; because the magnitude and direction of cropping impacts on C and N storage depend on soil’s antecedent C level. For a greater physical stabilization of sequestered C and N, in the Entisols of northwest India, MW and SW may be promoted to low- and medium-C soils, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Albalasmeh, M. Berli, D. S. Shafer, and T. A. Ghezzehei, “Degradation of moist soil aggregates by rapid temperature rise under low intensity fire,” Plant Soil 362, 335–344 (2013). https://doi.org/10.1007/s11104-012-1408-z

    Article  Google Scholar 

  2. M. M. Al-Kaisi, X. H. Yin, and M. A. Licht, “Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils,” Agric., Ecosyst. Environ. 105, 635–647 (2005). https://doi.org/10.1016/j.agee.2004.08.002

    Article  Google Scholar 

  3. M. Alvear, A. Rosas, J. Rouanet, and F. Borie, “Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile,” Soil Tillage Res. 82, 195–202 (2005). https://doi.org/10.1016/j.still.2004.06.002

    Article  Google Scholar 

  4. Z. S. Artemyeva, N. N. Danchenko, E. P. Zazovskaya, Y. G. Kolyagin, N. P. Kirillova, and B. M. Kogut, “Natural 13C abundance and chemical structure of organic matter of haplic chernozem under contrasting land uses,” Eurasian Soil Sci. 54, 852–864 (2021).

    Article  Google Scholar 

  5. Z. S. Artemyeva, N. N. Danchenko, Y. G. Kolyagin, N. P. Kirillova, E. V. Tsomaeva, and B. M. Kogut, “Chemical structure of the organic matter of water-stable structural units in haplic chernozem under contrasting land uses: solid-state CP-MAS 13C-NMR spectroscopy,” Eurasian Soil Sci. 55, 734–744 (2022).

    Article  Google Scholar 

  6. S. Bansal, X. Yin, H. J. Savoy, S. Jagadamma, J. Lee, and V. Sykes, “Long-term influence of phosphorus fertilization on organic carbon and nitrogen in soil aggregates under no-till corn–wheat–soybean rotations,” Agron. J. 112, 2519–2534 (2020). https://doi.org/10.1002/agj2.20200

    Article  Google Scholar 

  7. D. K. Benbi, A. S. Toor, and S. Kumar, “Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered,” Plant Soil 360, 145–162 (2012). https://doi.org/10.1007/s11104-012-1226-3

    Article  Google Scholar 

  8. D. K. Benbi and N. Senapati, “Soil aggregation and carbon and nitrogen stabilization in relation to residue and manure application in rice–wheat systems in northwest India,” Nutr. Cycling Agroecosyst. 87, 233–247 (2010). https://doi.org/10.1007/s10705-009-9331-2

    Article  Google Scholar 

  9. D. K. Benbi, K. Brar, A. S. Toor, and P. Singh, “Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India,” Geoderma 237, 149–158 (2015). https://doi.org/10.1016/j.geoderma.2014.09.002

    Article  Google Scholar 

  10. D. K. Benbi, P. Singh, A. S. Toor, and G. Verma, “Manure and fertilizer application effects on aggregate and mineral-associated organic carbon in a loamy soil under rice-wheat system,” Commun. Soil Sci. Plant Anal. 47, 1828–1844 (2016). https://doi.org/10.1080/00103624.2016.1208757

    Article  Google Scholar 

  11. A. M. Cates and M. D. Ruark, “Soil aggregate and particulate C and N under corn rotations: responses to management and correlations with yield,” Plant Soil 415, 521–533 (2017).

    Article  Google Scholar 

  12. A. M. Cates, M. D. Ruark, J. L. Hedtcke, and J. L. Posner, “Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter,” Soil Tillage Res. 155, 371–380 (2016). https://doi.org/10.1016/j.still.2015.09.008

    Article  Google Scholar 

  13. A. K. Chaitanya, B. Mandal, G. C. Hazra, and P. Kumar, “Effect of long-term use of different source of organics on soil aggregate fractions,” Int. J. Pure Appl. Biosci. 5,1368–1375 (2017). https://doi.org/10.18782/2320-7051.5665

    Article  Google Scholar 

  14. M. Chowaniak, T. Głąb, K. Klima, M. Niemiec, T. Zaleski, and D. Zuzek, “Effect of tillage and crop management on runoff, soil erosion and organic carbon loss” Soil Use Manage. 36, 581–593 (2020). https://doi.org/10.1111/sum.12606

    Article  Google Scholar 

  15. A. Christensen, “Straw incorporation and soil organic matter in macro-aggregates and particle size separates,” J. Soil Sci. 37, 125–135 (1986).

    Article  Google Scholar 

  16. J. Chu, T. Zhang, W. Chang, D. Zhang, S. Zulfiqar, A. Fu, and Y. Hao, “Impacts of cropping systems on aggregates associated organic carbon and nitrogen in a semiarid highland agroecosystem,” PloS One 11, e0165018 (2016). https://doi.org/10.1371/journal.pone.0165018

    Article  Google Scholar 

  17. S. J. Ding, X. F. Zhang, W. L. Yang, X. L. Xin, A. N. Zhu, and S. M. Huang, “Soil nutrients and aggregate composition of four soils with contrasting textures in a long-term experiment,” Eurasian Soil Sci. 54, 1746–1755 (2021).

    Article  Google Scholar 

  18. E. V. Dubovik and D. V. Dubovik, “Relationships between the organic carbon content and structural state of typical chernozem,” Eurasian Soil Sci. 52, 150–161 (2019).

    Article  Google Scholar 

  19. E. T. Elliott, “Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils,” Soil Sci. Soc. Am. J. 50, 627–633 (1986). https://doi.org/10.2136/sssaj1986.03615995005000030017x

    Article  Google Scholar 

  20. M. Fontana, A. Berner, P. Mäder, F. Lamy, and P. Boivin, “Soil organic carbon and soil bio-physicochemical properties as co-influenced by tillage treatment,” Soil Sci. Soc. Am. J. 79, 1435–1445 (2015).

    Article  Google Scholar 

  21. A. N. Ganeshamurthy, M. Ali, and Ch. Srinivasarao, “Role of pulses in sustaining soil health and crop production,” Indian J. Fert. 1, 29–40 (2006).

    Google Scholar 

  22. A. Gautam, J. Guzman, P. Kovacs, and S. Kumar, “Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions,” Arch. Agron. Soil Sci. 1, 1–13 (2021). https://doi.org/10.1080/03650340.2021.1887480

    Article  Google Scholar 

  23. S. Ghosh, D. K. Benbi, and O. P. Chaudhary, “Cropping system effects on organic carbon pools in four Indo-Gangetic alluvial soils of different antecedent carbon levels,” J. Soil Sci. Plant Nutr., 1–18 (2022). https://doi.org/10.1007/s42729-022-00794-z

  24. A. S. Grandy and G. P. Robertson, “Aggregation and organic matter protection following tillage of a previously uncultivated soil,” Soil Sci. Soc. Am. J. 70, 1398–1406 (2006). https://doi.org/10.2136/sssaj2005.0313

    Article  Google Scholar 

  25. R. J. Haynes, “Labile organic matter fractions as central components of the quality of agricultural soils: an overview,” Adv. Agron. 85, 221–268 (2005). https://doi.org/ 85005-3https://doi.org/10.1016/S0065-2113(04)

  26. K. K. Hazra, C. P. Nath, U. Singh, C. S. Praharaj, N. Kumar, S. S. Singh, and N. P. Singh, “Diversification of maize-wheat cropping system with legumes and integrated nutrient management increases soil aggregation and carbon sequestration,” Geoderma 353, 308–319 (2019). https://doi.org/10.1016/j.geoderma.2019.06.039

    Article  Google Scholar 

  27. X. Q. Huang, Z. B. Xin, Y. J. Zhao, and F. Y. Ma, “Soil aggregate composition and distribution characteristics of soil organic carbon of typical plantations in mountainous area of Beijing,” J. Soil Water Conserv. 30, 239–246 (2016).

    Google Scholar 

  28. M. L. Jackson, Soil Chemical Analysis (Practice Hall of India Pvt Ltd, New Delhi, 1967).

    Google Scholar 

  29. L. Kailou and L. Yazhen, “Different response of grain yield to soil organic carbon, nitrogen, and phosphorus in red soil as based on the long-term fertilization experiment,” Eurasian Soil Sci. 51, 1507–1513 (2018).

    Article  Google Scholar 

  30. J. A. Kirkegaard and M. H. Ryan, “Magnitude and mechanisms of persistent crop sequence effects on wheat,” Field Crops Res. 164, 154–165 (2014). https://doi.org/10.1016/j.fcr.2014.05.005

    Article  Google Scholar 

  31. A. M. Kogut, M. A. Yashin, V. M. Semenov, T. N. Avdeeva, L. G. Markina, S. M. Lukin, and S. I. Tarasov, “Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil,” Eurasian Soil Sci. 49, 45–55 (2016).

    Article  Google Scholar 

  32. A. M. Kogut, Z. S. Artemyeva, N. P. Kirillova, M. A. Yashin, and E. I. Soshnikova, “Organic matter of the air-dry and water-stable macroaggregates (2–1 mm) of haplic chernozem in contrasting variants of land use,” Eurasian Soil Sci. 52, 141–149 (2019).

    Article  Google Scholar 

  33. Y. Y. Kong, S. J. Fonte, C. van Kessel, and J. Six, “Transitioning from standard to minimum tillage: trade-offs between soil organic matter stabilization, nitrous oxide emissions, and N availability in irrigated cropping systems,” Soil Tillage Res. 104, 256–262 (2009). https://doi.org/10.1016/j.still.2009.03.004

    Article  Google Scholar 

  34. S. M. Kristiansen, P. SchjØnning, I. K. Thomsen, J. E. Olesen, K. Kristensen, and B. T. Christensen, “Similarity of differently sized macroaggregates in arable soils of different texture,” Geoderma 137, 147–154 (2006).

    Article  Google Scholar 

  35. K. Kumar, S. S. Parihar, and P. R. Gajri, “Determination of root distribution of wheat by auger sampling,” Plant Soil 149, 245–253 (1993). https://doi.org/10.1007/BF00016615

    Article  Google Scholar 

  36. R. Lal and M. K. Shukla, Principles of Soil Physics (Taylor and Francis, CRC Press, 2013).

    Google Scholar 

  37. A. Lehmann, W. Zheng, and M. C. Rillig, “Soil biota contributions to soil aggregation,” Nat. Ecol. Evol. 12, 1828 (2017). https://doi.org/10.1038/s41559-017-0344-y

    Article  Google Scholar 

  38. A. Maiga, A. Alhameid, S. Singh, A. Polat, J. Singh, S. Kumar, and S. Osborne, “Responses of soil organic carbon, aggregate stability, carbon and nitrogen fractions to 15 and 24 years of no-till diversified crop rotations,” Soil Res. 57, 149–157 (2019). https://doi.org/10.1071/SR18068

    Article  Google Scholar 

  39. Q. Meng, Y. Sun, J. Zhao, L. Zhou, X. Ma, M. Zhou, W. Gao, and G. Wang, “Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China,” J. Soils Sediments 14, 1041–1049 (2014). https://doi.org/10.1007/s11368-014-0859-7

    Article  Google Scholar 

  40. H. D. Merwine and M. Peech, “Exchangeability of soil potassium in the sand, silt and clay fractioned as influenced by the nature of the complementary exchangeable cation” Soil Sci. Soc. Am. Proc. 15, 125–128 (1951).

    Article  Google Scholar 

  41. M. M. Mikha, G. W. Hergert, J. G. Benjamin, J. D. Jabro, and R. A. Nielsen, “Long-term manure impacts on soil aggregates and aggregate-associated carbon and nitrogen” Soil Sci. Soc. Am. J. 79, 626–636 (2015). https://doi.org/10.2136/sssaj2014.09.0348

    Article  Google Scholar 

  42. M. M. Mikha, M. F. Vigil, and J. G. Benjamin, “Long-term tillage impacts on soil aggregation and carbon dynamics under wheat-fallow in the central Great Plains,” Soil Sci. Soc. Am. J. 77, 594–605 (2013).

    Article  Google Scholar 

  43. A. Mustafa, X. Minggang, S. A. Shah, M. M. Abrar, S. Nan, W. Baoren, C. Zejiang, Q. Saeed, M. Naveed, K. Mehmood, and A. Núñez-Delgado, “Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China,” J. Environ. Manage. 270, 110894 (2020). https://doi.org/10.1016/j.jenvman.2020.110894

    Article  Google Scholar 

  44. C. P. Nath, K. K. Hazra, N. Kumar, C. S. Praharaj, S. S. Singh, U. Singh, and N. P. Singh, “Including grain legume in rice–wheat cropping system improves soil organic carbon pools over time,” Ecol. Eng. 129, 144–153 (2019). https://doi.org/10.1016/j.ecoleng.2019.02.004

    Article  Google Scholar 

  45. M. Naveed, L. K. Brown, A. C. Raffan, T. S. George, A. G. Bengough, T. Roose, I. Sinclair, N. Koebernick, L. Cooper, C. A. Hackett, and P. D. Hallett, “Plant exudates may stabilize or weaken soil depending on species, origin and time,” Eur. J. Soil Sci. 68, 806–816 (2017). https://doi.org/10.1111/ejss.12487

    Article  Google Scholar 

  46. T. R. Neu and U. Kuhlicke, “Fluorescence Lectin bar-coding of glycoconjugates in the extracellular matrix of biofilm and bioaggregate forming microorganisms,” Microorganisms 5, (2017). https://doi.org/10.3390/microorganisms5010005

  47. M. Nie, E. Pendall, C. Bell, and M. D. Wallenstein, “Soil aggregate size distribution mediates microbial climate change feedbacks,” Soil Biol. Biochem. 68, 357–365 (2014). https://doi.org/10.1016/j.soilbio.2013.10.012

    Article  Google Scholar 

  48. A. Novara, J. Rühl, T. La Mantia, L. Gristina, S. La Bella, and T. Tuttolomondo, “Litter contribution to soil organic carbon in the processes of agriculture abandon,” Solid Earth 6, 425–432 (2015). https://doi.org/10.5194/se-6-425-2015

    Article  Google Scholar 

  49. J. T. O’Donovan, C.A. Grant, R. E. Blackshaw, K. N. Harker, E. N. Johnson, Y. Gan, G. P. Lafond, et al., “Rotational effects of legumes and non-legumes on hybrid canola and malting barley,” Agron. J. 106, 1921–1932 (2014). https://doi.org/10.1139/cjps-2016-0411

    Article  Google Scholar 

  50. J. M. Oades, “The role of biology in the formation, stabilization and degradation of soil structure,” Geoderma 56, 377–400 (1993). https://doi.org/10.1016/0016-7061(93)90123-3

    Article  Google Scholar 

  51. S. R. Olsen, C. V. Cole, F. S. Watanabe, and L. A. Dean, Estimation of Available Phosphorus by Extraction with Sodium Bicarbonate (US Deptt Agric Circ, 1954).

    Google Scholar 

  52. A. L. Page, R. Miller, and D. R. Keeny, Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed. (American Society of Agronomy, Madison, 1982).

  53. M. M. Pulleman, J. Six, N. Van Breemen, and A. G. Jongmans, “Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity,” Eur. J. Soil Sci. 56, 453–467 (2005).

    Article  Google Scholar 

  54. Y. C. Qi, Y. Q. Wang, J. Liu, X. S. Yu, and C. J. Zhou, “Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index,” Transfer CSAE 27, 340–347 (2011).

    Google Scholar 

  55. L. P. Qiu, X. P. Wei, X. C. Zhang, J. M. Cheng, W. Gale, C. Guo, and T. Long, “Soil organic carbon losses due to land use change in a semiarid grassland,” Plant Soil 355, 299–309 (2012). https://doi.org/10.1371/journal.pone.0165018

    Article  Google Scholar 

  56. R. R. Ratnayake, T. Roshanthan, N. Gnanavelrajah and, S. B. Karunaratne, “Organic carbon fractions, aggregate stability, and available nutrients in soil and their interrelationships in tropical cropping systems: a case study,” Eurasian Soil Sci. 52, 1542–1554 (2019).

    Article  Google Scholar 

  57. A. Rumpel and I. Kögel-Knabner, “Deep soil organic matter—a key but poorly understood component of terrestrial C cycle,” Plant Soil 338, 143–158 (2011). https://doi.org/10.1007/s11104-010-0391-5

    Article  Google Scholar 

  58. V. M. Semenov, T. N. Lebedeva, N. B. Pautova, D. P. Khromychkina, I. V. Kovalev, and N. O. Kovaleva, “Relationships between the size of aggregates, particulate organic matter content, and decomposition of plant residues in soil,” Eurasian Soil Sci. 53, 454–466 (2020).

    Article  Google Scholar 

  59. J. Six and J. D. Jastrow, “Soil organic matter turnover,” in Encyclopedia of Soil Science, Ed. by R. Lal (USA Marcel Dekker, New York, 2002), pp. 936–942.

    Google Scholar 

  60. J. Six, E. T. Elliott, and K. Paustian, “Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture,” Soil Biol. Biochem. 32, 2099–2103 (2000). https://doi.org/10.1016/s0038-0717(00)00179-6

    Article  Google Scholar 

  61. J. Six, E. T. Elliott, and K. Paustian, “Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy,” Soil Sci. Soc. Am. J. 64, 1042–1049 (2000). https://doi.org/10.2136/sssaj2000.6431042x

    Article  Google Scholar 

  62. J. Six, E. T. Elliott, K. Paustian, and J. W. Doran, “Aggregation and soil organic matter accumulation in cultivated and native grassland soils,” Soil Sci. Soc. Am. J. 62, 1367–1377 (1998). https://doi.org/10.2136/sssaj1998.03615995006200050032x

    Article  Google Scholar 

  63. J. Six, H. Bossuyt, S. Degryze, and K. Denef, “A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics,” Soil Tillage Res. 79, 7–31 (2004). https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  64. J. Six, K. Paustian, E. T. Elliott, and C. Combrink, “Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon,” Soil Sci. Soc. Am. J. 64, 681–689 (2000). https://doi.org/10.2136/sssaj2000.642681x

    Article  Google Scholar 

  65. J. Six, R. T. Conant, E. A. Paul, and K. Paustian, “Stabilization mechanisms of soil organic matter: implications for C-saturation of soils,” Plant Soil 241, 155–176 (2002). https://doi.org/10.1023/A:1016125726789

    Article  Google Scholar 

  66. G. P. S. Sodhi, V. Beri, and D. K. Benbi, “Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice–wheat system,” Soil Tillage Res. 103, 412–418 (2009). https://doi.org/10.1016/j.still.2008.12.005

    Article  Google Scholar 

  67. K. Song, X. Zheng, W. Lv, Q. Qin, L. Sun, H. Zhang, and Y. Xue, “Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil,” Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  68. A. E. Stewart, K. Paustian, R. T. Conant, A. F. Plante, and J. Six, “Soil carbon saturation: concept, evidence and evaluation,” Biogeochemistry 86, 19–31 (2007).

    Article  Google Scholar 

  69. O. E. Sukhoveeva, “Input of organic carbon to soil with post-harvest crop residues,” Eurasian Soil Sci. 55, 810–818 (2022).

    Article  Google Scholar 

  70. V. G. Sychev, A. N. Naliukhin, L. K. Shevtsova, O. V. Rukhovich, and M. V. Belichenko, “Influence of fertilizer systems on soil organic carbon content and crop yield: results of long-term field experiments at the geographical network of research stations in Russia,” Eurasian Soil Sci. 53, 1794–1808 (2020).

    Article  Google Scholar 

  71. S. S. Tagiverdiev, O. S. Bezuglova, S. N. Gorbov, P. N. Skripnikov, and D. A. Kozyrev, “Aggregate composition as related to the distribution of different forms of carbon in soils of Rostov agglomeration,” Eurasian Soil Sci. 54, 1427–1432 (2021).

    Article  Google Scholar 

  72. M. M. Tahir, A. B. Khalid, K. Mehmood, A. Khaliq, and N. Rahim, “Variations in soil carbon and nitrogen contents under different land uses in sub-temperate highland of Azad Kashmir,” Eurasian Soil Sci. 54, 586–596 (2021).

    Article  Google Scholar 

  73. RStudio Team, “RStudio: Integrated development for R. RStudio,” (PBC, Boston, 2020). http://www.rstudio.com.

  74. P. Trivedi, I. J. Rochester, C. Trivedi, J. D. Van Nostrand, J. Zhou, S. Karunaratne, I. C. Anderson, and B. K. Singh, “Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities,” Soil Biol. Biochem. 91, 169–181 (2015). https://doi.org/10.1016/j.soilbio.2015.08.034

    Article  Google Scholar 

  75. USDA, Soil Taxonomy: a Basic System of Soil Classification for Making and Interpreting Soil Survey (Soil Survey Staff, United States Department of Agriculture, Natural Resource Conservation Service, Washington, DC, 1999).

  76. A. H. M. van Bavel, “Mean weight-diameter of soil aggregates as a statistical index of aggregation,” Soil Sci. Soc. Am. J. 14, 20–23 (1950). https://doi.org/10.2136/sssaj1950.036159950014000C.0005x

    Article  Google Scholar 

  77. M. V. von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review,” Eur. J. Soil Sci. 57, 426–445 (2006). https://doi.org/10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  78. X. R. Wei, M. A. Shao, W. Gale, X. C. Zhang, and L. H. Li, “Dynamics of aggregate-associated organic carbon following conversion of forest to cropland,” Soil Biol. Biochem. 57, 876–883 (2013). https://doi.org/10.1016/j.soilbio.2012.10.020

    Article  Google Scholar 

  79. A. Weidhuner, A. Hanauer, R. Krausz, S. J. Crittenden, K. Gage, and A. Sadeghpour, “Tillage impacts on soil aggregation and aggregate-associated carbon and nitrogen after 49 years,” Soil Tillage Res. 208, 104878 (2013). https://doi.org/10.1016/j.still.2020.104878

    Article  Google Scholar 

  80. J. K. Whalen and C. Chang, “Macroaggregate characteristics in cultivated soils after 25 annual manure applications,” Soil Sci. Soc. Am. J. 66, 1637–1647 (2002).

    Article  Google Scholar 

  81. J. K. Whalen, Q. Hu, and A. Liu, “Compost applications increase water-stable aggregates in conventional and no-tillage systems,” Soil Sci. Soc. Am. J. 67, 1842–1847 (2002).

    Article  Google Scholar 

  82. A. L. Wright and F. M. Hons, “Soil aggregation and carbon and nitrogen storage under soybean cropping sequences,” Soil Sci. Soc. Am. J. 68, 507–513 (2004).

    Article  Google Scholar 

  83. R. E. Yoder, “A direct method of aggregate analysis of soil and a study of the physical nature of erosion losses,” J. Am. Soc. Agron. 28, 337–351 (1936). https://doi.org/10.2134/agronj1936.00021962002800050001x

    Article  Google Scholar 

  84. H. Yu, W. Ding, J. Luo, R. Geng, and Z. Cai, “Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil,” Soil Tillage Res. 124, 170–177 (2012).

    Article  Google Scholar 

  85. S. Zhang, R. Wang, X. Yang, B. Sun, and Q. Li, “Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol,” Sci. Rep. 6, 39107 (2016). https://doi.org/10.1038/srep39107

    Article  Google Scholar 

  86. Y. Zhang, Y. Li, Y. Liu, X. Huang, W. Zhang, and T. Jiang, “Responses of soil labile organic carbon and carbon management index to different long-term fertilization treatments in a typical yellow soil region,” Eurasian Soil Sci. 54, 605–618 (2021).

    Article  Google Scholar 

  87. Y. J. Zhong, K. L. Liu, C. Ye, S. S. Huang, J. X. Du, and J. Z. Chen, “Differential grain yields and soil organic carbon levels between maize and rice systems of subtropical red soil in response to long-term fertilizer treatments,” Eurasian Soil Sci. 55, 251–261 (2022).

    Article  Google Scholar 

  88. M. Zhou, C. Liu, J. Wang, Q. Meng, Y. Yuan, X. Ma, X. Liu, Y. Zhu, G. Ding, J. Zhang, and X. Zeng, “Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China,” Sci. Rep. 10, 1–3 (2020). https://doi.org/10.1038/s41598-019-57193-1

    Article  Google Scholar 

  89. A. Zou, Y. Li, W. Huang, G. Zhao, G. Pu, J. Su, M. S. Coyne, Y. Chen, L. Wang, X. Hu, and Y. Jin, “Rotation and manure amendment increase soil macro-aggregates and associated carbon and nitrogen stocks in flue-cured tobacco production,” Geoderma 325, 49–58 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Indian Council of Agricultural Research (ICAR) National Professor project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Ghosh.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHORS’ CONTRIBUTIONS

Samrat Ghosh: sampling and laboratory analyses, data analysis, preparation of draft and final manuscript; Dinesh Kumar Benbi: conceptualizing and designing the study, conduct of field experiment, supervising and facilitating laboratory analysis, editing the manuscript.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Benbi, D.K. Impacts of Cropping Systems on Soil Aggregates and Associated Carbon and Nitrogen Storage in Four Entisols of Different Antecedent Carbon Levels. Eurasian Soil Sc. 56, 371–386 (2023). https://doi.org/10.1134/S1064229322601524

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322601524

Keywords:

Navigation