Skip to main content
Log in

Agrophysical Properties of Ordinary Slightly Eroded Chernozem in a Long-Term Experiment in Rostov Oblast

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The research data on the fields (situated on the slope of the Bol’shoi Log gully, Aksai district, Rostov oblast, Russia) of the experiment registered in the Russian Geographic Network of long-term experiments with fertilizers (certificate no. 169) are described. The data on organic carbon content (Corg), exchangeable bases, and characteristics of structure and aggregate composition of old arable lands located on a slightly eroded slope of the southeastern aspect with a slope gradient of 3.5°–4.0° over a 35-year period are analyzed. The examined soil is an ordinary carbonate heavy loamy chernozem on loess-like loam, or Haplic Chernozem (Loamic). A long-term use of various farming technologies on the slightly eroded slope has changed the properties of the arable layer. Degradation processes in the form of soil loss have been observed in 74.2% of the analyzed years depending on the prevailing meteorological conditions. An extensive farming system in the crop rotations with different erosion tolerance is accompanied by a decrease in the Corg content from 3.80–3.83 to 3.58–3.69%. The use of landscape specific farming systems has reduced soil loss. Application of soil-protective crop rotations on an erosion-prone slope reduces soil erosion there by 35.0–52.5%. Organomineral fertilizers applied at medium doses (N46P24K30) stabilize the Corg content at a level of 3.78–3.88%. A 1.5-fold increase in the dose of fertilizers and the introduction of 40% of perennial grasses into the crop rotation raises the Corg content to 4.09–4.12%. A strong correlation (r = 0.90) between total exchangeable bases and Corg content is observed. These changes in the agrochemical properties influence soil structure. A decrease in the number of lumpy structural aggregates (>10 mm) caused by an increase in the share of aggregates of agronomically valuable size (7–2 mm) and silt fraction (<0.25 mm) is recorded. Statistical analysis shows two principal components (PCs) describing 79.1% of the total variance of the aggregates (PC1, 40.6% and PC2, 38.5%). The increase in mesoaggregates in PC1 with the decrease in the share of larger aggregates (>10 mm) suggests soil degradation processes. The fractions with the sizes of 5–7, 2–3, and 0.25–0.5 mm are the most important contributors to the variance described by the two first PCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. V. Arinushkina, Handbook on the Chemical Analysis of Soils (Mosk. Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  2. M. A. Balamirzoyev, D. B. Asgerova, E. R. Mirzoev, and I. A. Magomedov, “Conditions of soil fertility of the deltaic and accumulative plains of the West Caspian,” Arid Ecosyst. 4 (1), 1–5 (2014).

    Article  Google Scholar 

  3. O. S. Bezuglova, V. A. Lykhman, E. A. Polienko, and A. V. Gorovtsov, Humic Preparations and the Structural State of Chernozem and Chestnut Soils of the Rostov Oblast (Izd. OOO AzovPrint, Azov, 2020) [in Russian].

    Google Scholar 

  4. L. V. Boitsova, “Structural composition of soddy-podzolic soils of various land uses,” Agrofizika, No. 1, 10–19 (2017).

    Google Scholar 

  5. A. F. Vadyunina and Z. A. Korchagina, Methods for Studying the Physical Properties of Soils and Grounds (Vysshaya Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  6. V. N. Vasilenko, V. N. Zinchenko, V. P. Ermolenko, A. V. Labyntsev, I. M. Shaposhnikova, I. N. Listopadov, K. S. Artokhin, P. D. Shevchenko, and A. I. Grabovets, Zonal Landscape Based Farming Systems (Don Zonal Research Institute of Agriculture, Rassvet settlement, 2007).

  7. V. B. Vorob’ev and I. Yu. Grishchenko, “Effect of humus content in agro-podzolic light loamy soil on some properties of the soil-absorbing complex,” Vestn. Beloruss. Gos. S.-kh. Akad., No. 3, 59–62 (2013).

  8. K. K. Gedroits, The Doctrine of the Absorption Capacity of Soils. Selected Writings (Sel’khozgiz, Moscow, 1955), Vol. 1, pp. 241–384.

    Google Scholar 

  9. V. N. Gerasimenko, V. N. Gladkov, and A. A. Anishchenko, “Changes in the structure of leached chernozem in the lowland-depression agrolandscape depending on the technology of cultivation of field crops,” Politemat. Setevoi Elektron. Nauchn. Zh. Kuban. Gos. Agrar. Univ., No. 139, 38–47 (2018). https://doi.org/10.21515/1990-4665-138-014

  10. A. V. Gusarov, V. N. Golosov, A. G. Sharifullin, and A. M. Gafurov, “Contemporary trend in erosion of arable southern chernozems (Haplic Chernozems Pachic) in the west of Orenburg oblast (Russia),” Eurasian Soil Sci. 51 (5), 561–575 (2018). https://doi.org/10.1134/S1064229318050046

    Article  Google Scholar 

  11. Z. G. Dzhanaev, “Negative changes in the absorbing soil complex of the North Caucasus,” Plodorodie, No. 4 (31), 7–10 (2006).

    Google Scholar 

  12. V. N. D’yakov, “Improving the method of accounting for soil runoff by waterways,” Pochvovedenie, No. 3, 146–148 (1984).

    Google Scholar 

  13. D. V. Eremina, N. A. Gruzdeva, and D. I. Eremin, “Comparative evaluation of the structural and aggregate composition of dark gray forest soils in the forest-steppe zone of the Trans-Urals,” Vestn. Krasnoyarsk. Gos. Agrar. Univ., No. 12 (153), 57–63 (2019). https://doi.org/10.36718/1819-4036-2019-12-57-63

  14. B. M. Kogut, A. S. Frid, N. P. Masyutenko, Yu. V. Kuvaeva, V. A. Romanenkov, V. I. Lazarev, and V. A. Kholodov, “Dynamics of organic carbon content in a typical chernozem under conditions of a long field experiment,” Agrokhimiya, No. 12, 37–44 (2011).

    Google Scholar 

  15. A. V. Kozlov and I. P. Uromova, “Assessment of the agroecological state of podzolized chernozem in the conditions of the agroecosystem of the south of the Nizhny Novgorod oblast,” Usp. Sovrem. Estestvoz., No. 12 (1), 63–69 (2018).

  16. M. A. Komissarov and A. Klik, “The impact of No-Till, conservation, and conventional tillage systems on erosion and soil properties in lower Austria,” Eurasian Soil Sci. 53 (4), 503–511 (2020). https://doi.org/10.1134/S1064229320040079

    Article  Google Scholar 

  17. G. A. Larionov, O. G. Bushueva, A. V. Gorobets, N. G. Dobrovolskaya, Z. P. Kiryukhina, S. F. Krasnov, L. F. Litvin, I. A. Maksimova, and I. I. Sudnitsyn, “Experimental study of factors affecting soil erodibility,” Eurasian Soil Sci. 51 (3), 336–344 (2018). https://doi.org/10.1134/S1064229318030067

    Article  Google Scholar 

  18. G. A. Larionov, O. G. Bushueva, N. G. Dobrovol’skaya, Z. P. Kiryukhina, L. F. Litvin, and I. A. Maksimova, “Destruction of soil aggregates in slope flows,” Eurasian Soil Sci. 40 (10), 1128–1134 (2007).

    Article  Google Scholar 

  19. I. I. Lebedeva, Yu. I. Cheverdin, T. V. Titova, A. M. Grebennikov, and L. G. Markina, “Structural state of migrational-mycelial (typical) agrochernozems of the Kamennaya Steppe on plowed fields of different ages,” Eurasian Soil Sci. 50 (2), 218–228 (2017). https://doi.org/10.1134/S1064229317020090

    Article  Google Scholar 

  20. I. N. Listopadov, E. A. Gaevaya, D. S. Ignat’ev, and A. E. Mishchenko, “Water regime under winter wheat in crop rotations on an erosion-prone slope,” Zemledelie, No. 1, 6–8 (2012).

    Google Scholar 

  21. L. F. Litvin, Z. P. Kiryukhina, S. F. Krasnov, and N. G. Dobrovol’skaya, “Dynamics of agricultural soil erosion in European Russia,” Eurasian Soil Sci. 50 (11), 1344–1353 (2017). https://doi.org/10.1134/S1064229317110084

    Article  Google Scholar 

  22. K. A. Maltsev and O. P. Yermolaev, “Potential soil loss from erosion on arable lands in the European part of Russia,” Eurasian Soil Sci. 52 (12), 1588–1597 (2019). https://doi.org/10.1134/S106422931912010X

    Article  Google Scholar 

  23. V. G. Mamontov, R. F. Baibekov, V. I. Lazarev, S. A. Yudin, S. A. Tsvetkov, and E. B. Taller, “Changes in the structural state of a typical chernozem of the Kursk region under the influence of permanent fallow and winter wheat,” Zemledelie, No. 1, 7–10 (2019). https://doi.org/10.24411/0044-3913-2019-10102

  24. V. G. Mamontov, L. P. Rodionova, Z. S. Artem’eva, V. A. Krylov, and G. K. Klyshbekova, “Agrogenic and post-agrogenic transformation of the structural state of the typical chernozem of the Kursk oblast,” Mezhdunar. S.-kh. Zh., No. 5, 35–39 (2019). https://doi.org/10.24411/2587-6740-2019-15081

  25. I. F. Medvedev, V. A. Nazarov, D. I. Gubarev, N. M. Zholinskii, and S. S. Derevyagin, “Changes in the agrophysical and agrochemical properties of southern chernozem under various methods of basic tillage,” Agrar. Nauch. Zh., No. 2, 14–19 (2017).

  26. Yu. L. Meshalkina and V. P. Samsonova, Mathematical Statistics in Soil Science (Mosk. Univ., Moscow, 2008) [in Russian].

    Google Scholar 

  27. A. S. Naidenov, V. P. Vasil’ko, N. I. Bardak, and V. N. Gladkov, “Dynamics of agrophysical properties of chernozem soils under long-term agricultural use and ways to optimize them in the conditions of the Krasnodar krai,” Politemat. Setevoi Elektron. Nauchn. Zh. Kuban. Gos. Agrar. Univ., No. 142, 41–56 (2018).

  28. A. I. Podkolzin and S. N. Shkabarda, “Status and dynamics of changes in the absorbing complex of soils in the central Ciscaucasia,” Agrokhimiya, No. 1, 16–25 (2008).

    Google Scholar 

  29. E. V. Poluektov, Soil Erosion on the Don and Measures to Combat It (Don Zonal Research Institute of Agriculture, Rostov-on-Don, 1984) [in Russian].

    Google Scholar 

  30. A. A. Romanenko, V. M. Kil’dyushkin, V. A. Kulik, A. G. Soldatenko, and E. G. Zhivotovskaya, “Fertility of leached degraded chernozem and productivity of winter wheat in crop rotation under various cultivation methods and fertilizer systems,” Dostizh. Nauki Tekh. APK, No. 2, 8–10 (2014).

    Google Scholar 

  31. G. T. Selyaninov, Methodology for Agricultural Climate Characterization. World Agro-Climatic Guide (Leningrad, 1977) [in Russian].

    Google Scholar 

  32. V. M. Semenov, T. N. Lebedeva, N. B. Pautova, D. P. Khromychkina, I. V. Kovalev, and N. O. Kovaleva, “Relationships between the size of aggregates, particulate organic matter content, and decomposition of plant residues in soil,” Eurasian Soil Sci. 53 (4), 454–466 (2020). https://doi.org/10.1134/S1064229320040134

    Article  Google Scholar 

  33. Theories and Methods of Soil Physics, Ed. by E. V. Shein and L. O. Karpachevskii (Grif i K, Moscow, 2007) [in Russian].

    Google Scholar 

  34. V. I. Terpelets and Yu. S. Plitin’, Humus State of Leached Chernozem in Agrocenoses of the Azov-Kuban Lowland (Kuban. Gos. Agrar. Univ., Krasnodar, 2015) [in Russian].

    Google Scholar 

  35. V. A. Tyulin and V. P. Sutyagin, “Designing crop rotations in adaptive-ecological agriculture (scientific review),” Mezhdunar. Zh. Prikl. Fundam. Issled., No. 10–2, 297–301 (2017).

  36. O. I. Filippova, V. A. Kholodov, N. A. Safronova, A. V. Yudina, and N. A. Kulikova, “Particle-size, microaggregate-size, and aggregate-size distributions in humus horizons of the zonal sequence of soils in European Russia,” Eurasian Soil Sci. 52 (3), 300–312 (2019). https://doi.org/10.1134/S1064229319030037

    Article  Google Scholar 

  37. V. A. Kholodov, V. P. Belobrov, N. V. Yaroslavtseva, M. A. Yashin, S. A. Yudin, N. R. Ermolaev, V. K. Dridiger, B. S. Ilyin, and V. I. Lazarev, “Influence of no-till system on the distribution of organic carbon and nitrogen by aggregate size fractions in protocalcic, endocalcic, and pantocalcic chernozems,” Eurasian Soil Sci. 54 (2), 285–290 (2021). https://doi.org/10.1134/S1064229321020071

    Article  Google Scholar 

  38. V. A. Kholodov, N. V. Yaroslavtseva, Yu. R. Farkhodov, V. P. Belobrov, S. A. Yudin, A. Ya. Aydiev, V. I. Lazarev, and A. S. Frid, “Changes in the ratio of aggregate fractions in humus horizons of chernozems in response to the type of their use,” Eurasian Soil Sci. 52 (2), 162–170 (2019). https://doi.org/10.1134/S1064229319020066

    Article  Google Scholar 

  39. V. A. Kholodov, N. V. Yaroslavtseva, Yu. R. Farkhodov, M. A. Yashin, V. I. Lazarev, B. S. Iliyn, O. I. Philippova, A. B. Volikov, and A. L. Ivanov, “Optical properties of the extractable organic matter fractions in typical chernozems of long-term field experiments,” Eurasian Soil Sci. 53 (6), 739–748 (2020). https://doi.org/10.1134/S1064229320060058

    Article  Google Scholar 

  40. V. A. Kholodov and N. V. Yaroslavtseva, Aggregates and Organic Matter of Soils in Recovering Cenoses (GEOS, Moscow, 2021) [in Russian].

    Google Scholar 

  41. N. V. Shiryaeva, L. N. Kuznetsova, A. G. Stupakov, A. V. Shiryaev, A. O. Simasheva, and K. K. Khakimova, “Structural state of the soil during the cultivation of winter wheat according to different predecessors,” Innovat. APK Probl. Perspekt., No. 3 (19), 116–123 (2018).

  42. O. Aygün, C. Kinnard, and S. Campeau, “Responses of soil erosion to warming and wetting in a cold Canadian agricultural catchment,” Catena 201, art. 105184 (2021). https://doi.org/10.1016/j.catena.2021.105184

    Article  Google Scholar 

  43. N. Favaretto, V. F. Cherobim, F. Medeiros Silveira, A. Timofiecsyk, R. Skalitz, G. Barth, V. Pauletti, J. Dieckow, and F. M. Vezzani, “Can application of liquid dairy manure onto no-tillage oxisols reduce runoff, sediment, phosphorus, and nitrogen losses over 9 years of natural rainfall?” Geoderma 405, art. 115406 (2022). https://doi.org/10.1016/j.geoderma.2021.115406

    Article  Google Scholar 

  44. L. Hok, J. C. Moraes Sa, S. Boulakia, M. Reyes, A. Oliveira Ferreira, F. E. Tivet, S. Saab, R. Auccaise, T. M. Inagaki, R. Schimiguel, L. A. Ferreira, C. Briedis, L. B. S. Canalli, R. Kong, and V. Leng, “Dynamics of soil aggregate-associated organic carbon based on diversity and high biomass-C input under conservation agriculture in a savanna ecosystem in Cambodia,” Catena 198, art. 105065 (2021). https://doi.org/10.1016/j.catena.2020.105065

    Article  Google Scholar 

  45. T. Hou, T. R. Filley, Y. Tong, B. Abban, S. Singh, A. N. T. Papanicolaou, K. M. Wacha, C. G. Wilson, and I. Chaubey, “Tillage-induced surface soil roughness controls the chemistry and physics of eroded particles at early erosion stage,” Soil Tillage Res. 207, art. 104807 (2021). https://doi.org/10.1016/j.still.2020.104807

    Article  Google Scholar 

  46. K. Juhos, B. Madarasz, Z. Kotroczo, A. Beni, M. Makadi, and I. Fekete, “Carbon sequestration of forest soils is reflected by changes in physicochemical soil indicators – A comprehensive discussion of a long-term experiment on a detritus manipulation,” Geoderma 385, art. 114918 (2021). https://doi.org/10.1016/j.geoderma.2020.114918

    Article  Google Scholar 

  47. X. Ma, C. Zhao, and J. Zhu, “Aggravated risk of soil erosion with global warming – A global meta-analysis,” Catena 200, art. 105129 (2021). https://doi.org/10.1016/j.catena.2020.105129

    Article  Google Scholar 

  48. M. J. M. Romkens, K. Helming, and S. N. Prasad, “Soil erosion under different rainfall intensities, surface roughness, and soil water regimes,” Catena 46 (2–3), 103–123 (2002). https://doi.org/10.1016/S0341-8162(01)00161-8

    Article  Google Scholar 

  49. B. Takoutsing, J. Weber, E. Aynekulu, J. A. R. Martin, K. Shepherd, A. Sila, Z. Tchoundjeu, and L. Diby, “Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon,” Geoderma 276, 64–73 (2016). https://doi.org/10.1016/j.geoderma.2016.04.027

    Article  Google Scholar 

  50. D. Wang, Z. Yuan, Y. Cai, D. Jing, F. Liu, Y. Tang, N. Song, Y. Li, C. Zhao, and X. Fu, “Characterisation of soil erosion and overland flow on vegetation-growing slopes in fragile ecological regions: a review,” J. Environ. Manage. 285, art. 112165 (2021). https://doi.org/10.1016/j.jenvman.2021.112165

    Article  Google Scholar 

  51. H. Wang, J. Xu, X. Liu, D. Zhang, L. Li, W. Li, and L. Sheng, “Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China,” Soil Tillage Res. 195, art. 104382 (2019). https://doi.org/10.1016/j.still.2019.104382

    Article  Google Scholar 

  52. World Reference Base for Soil Resources 2014. I International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. (FAO, Rome, 2014).

    Google Scholar 

  53. F. Yimer, S. Ledin, and A. Abdelkadir, “Concentrations of exchangeable bases and cation exchange capacity in soils of cropland, grazing and forest in the Bale Mountains, Ethiopia,” For. Ecol. Manage. 256 (6), 1298–1302 (2008). https://doi.org/10.1016/j.foreco.2008.06.047

    Article  Google Scholar 

  54. Z. Yuan, X. Jin, Q. Guan, and A. O. Meshack, “Converting cropland to plantation decreases soil organic carbon stock and liable fractions in the fertile alluvial plain of eastern China,” Geoderma Reg. 24, art. e00356 (2021). https://doi.org/10.1016/j.geodrs.2021.e00356

    Article  Google Scholar 

  55. Y. Zhang, E. Shengzhe, Y. Wang, S. Su, L. Bai, C. Wu, and X. Zeng, “Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics,” Catena 203, art. 105342 (2021). https://doi.org/10.1016/j.catena.2021.105342

    Article  Google Scholar 

Download references

Funding

This study was supported by the state budget and Ministry of Education and Science of the Russian Federation (project no. 0026-2019-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Gaevaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaevaya, E.A., Bezuglova, O.S. & Nezhinskaya, E.N. Agrophysical Properties of Ordinary Slightly Eroded Chernozem in a Long-Term Experiment in Rostov Oblast. Eurasian Soil Sc. 55, 1609–1622 (2022). https://doi.org/10.1134/S1064229322110059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322110059

Keywords:

Navigation