Skip to main content
Log in

Study of Porosity of Soils and Soil Minerals Modified by Adsorbed Humic Acid by the Method of Mercury Porosimetry

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Experimental determination of porosity and pore size distribution by mercury porosimetry has shown that adsorption modification of the surface of kaolinite, montmorillonite, palygorskite, quartz sand, gray forest soil (Eutric Luvisol (Loamic, Cutanic, Ochric), as well as chernozem (Luvic Chernozem (Loamic, Pachic)), by humic acid (HA) has little effect on total porosity and total pore volume, but affects differential pore volume values and pore size distribution (crypto-, ultramicro-, meso-, and macropores). For soils exposed to humic acids, greater stability of the structure and a significantly more homogeneous distribution of the differential porosity were revealed. The effect of the adsorption of humic acid on the structural–sorption properties of minerals and soils is important in the context of understanding formation of soil adsorption complex and regulation of the structural and water-physical properties of soils and soil fertility management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Z. S. Artem’eva and N. P. Kirillova, “Pools of soil organic matter: composition, role in soil formation processes, ecological functions,” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 90, 73–95 (2017). https://doi.org/10.19047/0136-1694-2017-90-73-95

    Article  Google Scholar 

  2. Z. S. Artemyeva, N. P. Kirillova, N. N. Danchenko, B. M. Kogut, and E. B. Taller, “The study of physical and chemical characteristics of organo-clay complexes of the chronosequence of Albic Retisols using dynamic light scattering and phase analysis light scattering,” Eurasian Soil Sci. 53 (4), 446–453 (2020). https://doi.org/10.1134/S1064229320040031

    Article  Google Scholar 

  3. S. A. Brunauer, Adsorption of Gases and Vapors (Izd. Inostr. Lit., Moscow, 1949) [in Russian].

    Google Scholar 

  4. K. M. Gerke, E. B. Skvortsova, and D. V. Korost, “Tomographic method of studying soil pore space: current perspectives and results for some Russian soils,” Eurasian Soil Sci. 45 (7), 700–709 (2012).

    Article  Google Scholar 

  5. Ch. Giles, B. Pigram, J. Clunie, et al., Adsorption from Solutions on the Surface of Solids, Ed. by G. Parfit and K. Rochester (Mir, Moscow, 1986) [in Russian].

  6. G. N. Kurochkina and V. G. Gaidalovich, “Influence of pollution by asymmetric dimethylhydrazine on the soils of the Ubsu-Nur basin,” Agrokhimiya, No. 5, 59–71 (2010).

    Google Scholar 

  7. G. N. Kurochkina, D. L. Pinskiy, G. N. Fedotov, M. Hajnos, Z. Sokolowska, and I. Ciesla, “Transformation of the structural organization of clay sediments and soils under the impact of polyelectrolytes,” Eurasian Soil Sci. 46 (8), 897–907 (2013). https://doi.org/10.1134/S106422931308005X

    Article  Google Scholar 

  8. Yu. S. Lipatov, Colloidal Chemistry of Polymers (Naukova Dumka, Kyiv, 1984) [in Russian].

    Google Scholar 

  9. D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Moscow, 1990) [in Russian].

    Google Scholar 

  10. D. S. Orlov, Chemistry of Soils (Mosk. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  11. D. S. Orlov, E. I. Gorshkova, and I. A. Salpagarova, Workshop and Seminars on Soil Chemistry (Mosk. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  12. D. S. Orlov and S. N. Chukov, “Second All-Russian Conference "Humic Substances in Biosphere” On methodological aspects of studying the structure and functions of humic substances, " Pochvovedenie, No. 8, 1019–1022 (2003).

  13. S. S. Panina and E. V. Shein, “Mathematical models of soil moisture transfer: importance of experimental assurance and upper boundary conditions,” Moscow Univ. Soil Sci. Bull. 69 (3), 133–138 (2014).

    Article  Google Scholar 

  14. A. I. Popov, Humic Substances: Properties, Structure, Formation, Ed. by E. I. Ermakov (S.-Peterburg Gos. Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  15. E. B. Skvortsova, “Micromorphometry of soil pore space and diagnostics of soil structure,” Pochvovedenie, No. 11, 42–49 (1994).

    Google Scholar 

  16. Yu. I. Tarasevich and F. D. Ovcharenko, Adsorption on Clay Minerals (Naukova Dumka, Kyiv, 1975) [in Russian].

    Google Scholar 

  17. S. N. Chukov, Structural and Functional Parameters of Soil Organic Matter (St.-Peterburg Gos. Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  18. E. V. Shein, “The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification,” Eurasian Soil Sci. 42 (3), 284–291 (2009).

    Article  Google Scholar 

  19. E. V. Shein, Soil Physics Course (Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  20. E. V. Shein and E. Yu. Milanovskii, “Role and significance of organic matter in the formation and stability of soil aggregates,” Pochvovedenie, No. 1, 53–61 (2003).

    Google Scholar 

  21. E. V. Shein, E. Yu. Milanovskii, D. D. Khaidapova, G. S. Bykova, A. A. Yudina, V. V. Chestnova, D. S. Fomin, and V. V. Klyueva, “Modern instrumental methods for studying the granulometric composition, rheological characteristics and properties of the surface of the solid phase of soils,” Vestn. Orenb. Gos. Univ., No. 6, 151–155 (2015).

  22. E. V. Shein, E. B. Skvortsova, A. V. Dembovetskii, K. N. Abrosimov, L. I. Il’in, and N. A. Shnyrev, “Pore-size distribution in loamy soils: a comparison between microtomographic and capillarimetric determination methods,” Eurasian Soil Sci. 49 (3), 315–325 (2016).https://doi.org/10.1134/S1064229316030091

    Article  Google Scholar 

  23. O. S. Yakimenko, V. A. Terekhova, M. A. Pukalchik, M. V. Gorlenko, and A. I. Popov, “Comparison of two integrated biotic indices in assessing the effects of humic products in a model experiment,” Eurasian Soil Sci. 52 (7), 736–746 (2019). https://doi.org/10.1134/S1064229319070159

    Article  Google Scholar 

  24. A. Alekseev, T. Alekseeva, P. Kalinin, and M. Hajnos, “Soils response to the land use and soil climatic gradients at ecosystem scale: mineralogical and geochemical data,” Soil Tillage Res. 180, 38–47 (2018). https://doi.org/10.1016/j.still.2018.02.008

    Article  Google Scholar 

  25. Z. Artemyeva, A. Zigova, N. Kirillova, M. Šťastny, O. Holubik, and V. Podrazsky, “Evaluation of aggregate stability of Haplic Stagnosols using dynamic light scat-tiring, phase 80 analysis light scattering and color coordinates,” Arch. Agron. Soil Sci. 63, 1–14 (2017).

    Article  Google Scholar 

  26. R. Brewer, Fabric and Mineral Analysis of Soils (Wiley and Sons, New York, 1964).

    Google Scholar 

  27. C. Chenu and A. F. Plante, “Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the “organo-mineral complex,” Eur. J. Soil Sci. 57, 596–607 (2006).

    Article  Google Scholar 

  28. M. Hajnos, J. Lipiec, R. Świeboda, Z. Sokołowska, and B Witkowska-Walczak, “Complete characterization of pore size distribution of tilled and orchard soil using water retention curve, mercury porosimetry, nitrogen adsorption, and water desorption methods,” Geoderma 135, 307–314 (2006).

    Article  Google Scholar 

  29. G. N. Kurochkina, “The effect of humic acid adsorption on the coagulation stability of soil suspensions,” Eurasian Soil Sci. 53, 62–72 (2020). https://doi.org/10.1134/S106422932001010X

    Article  Google Scholar 

  30. E. M. Murphy, J. M. Zachara, S. C. Smith, J. L. Phillips, and T. W. Wietsma, “Interaction of hydrophobic organic compounds with mineral-bound humic substances,” Environ. Sci. Technol. 28, 1291–1299 (1994).

    Article  Google Scholar 

  31. M. Zbik and R. St. C. Smart, “Nanomorphology of kaolinites: comparative SEM and AFM studies,” Clays Clay Miner. 46, 153–160 (1998).

    Article  Google Scholar 

  32. Zetasizer Nano Series. (User Manual). Nano 317. № 1.1. Feb. 2004. P. 2–5.

Download references

ACKNOWLEDGMENTS

The authors are grateful to M. Hajnos (Institute of Agrophysics of the Polish Academy of Sciences (Lublin)) for the mercury porometric measurements of soils and soil minerals using an AutoPoreIV 9500 porometer (Micromeritics).

Funding

The study was carried out within the framework of the state assignment АААА-А18-118013190172-4 “Biogeochemical processes of formation and transformation of the mineral and organic matter of soils as indicators of the evolution of terrestrial ecosystems.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kurochkina.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurochkina, G.N. Study of Porosity of Soils and Soil Minerals Modified by Adsorbed Humic Acid by the Method of Mercury Porosimetry. Eurasian Soil Sc. 55, 1414–1424 (2022). https://doi.org/10.1134/S106422932210009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932210009X

Keywords:

Navigation