Skip to main content
Log in

Dynamics of Soil Properties and Ecosystem Carbon Stocks for Different Types of Land Use (Middle Taiga of Karelia)

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of land use changes on soil properties and ecosystem carbon stocks on Podzols in the middle taiga of Karelia was investigated. Changes in the soil profile morphology, major agrochemical and microbiological indicators of upper horizons, Corg and Cmic stocks in the upper meter of soils, and structure of carbon pools at the key sites were analyzed. We studied a 130-yr-old mature pine forest as a control, arable land, hayfield, as well as young (15-yr-old) alder forest and middle-aged (65-yr-old) pine forest. The soils of the arable land, hayfield, and young alder forest were characterized by somewhat higher pH values and nutrient content at the C/N ratio of about 16. The highest contents of Corg were noted in the soil of the arable land (2.7%) and middle-aged forest (3.9%) at the Ntot content of 0.2%. In the soils of the arable land, hayfield and mature forest, the Cmic content varied within 129–167 mg C/kg soil, in the soils of the young and middle-aged forests, it was significantly higher: 312–447 mg C/kg soil. The maximum stocks of Cmic were recorded in the soil (121 g C/m2) and litter (70 g C/m2) of the young forest. In the soils of the arable land and middle-aged forest, the Cmic stocks were in the range of 70–81 g C/m2; in the hayfield and mature forest, 56 g C/m2. The Corg stocks in the one-meter soil layer reached maximum (205 t C/ha) in the soil of the arable land and decreased in the sequence hayfield—young forest—middle-aged forest—mature forest from 89 to 39 t C/ha. The total ecosystem carbon stock were maximum on the arable land (208 t C/ha), somewhat lower (180–193 t C/ha) in the mature forest, 152 t C/ha in the young forest, and minimum (96 t C/ha) in the hayfield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. D. Ananyeva, E. A. Susyan, I. M. Ryzhova, E. O. Bocharnikova, and E. V. Stolnikova, “Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenoses and in native spruce forests of the southern taiga (Kostroma oblast),” Eurasian Soil Sci. 42 (9), 1029–1037 (2009).

    Article  Google Scholar 

  2. Atlas of the Karelian ASSR, Ed. by A. G. Durov (GUGK SSSR, Moscow, 1989).

    Google Scholar 

  3. G. S. Biske, Quaternary Deposits and Geomorphology of Karelia (Gosizdat KASSR, Petrozavodsk, 1959) [in Russian].

    Google Scholar 

  4. A. A. Bobrik, O. Yu. Goncharova, G. V. Matyshak, I. M. Ryzhova, M. I. Makarov, and M. V. Timofeeva, “Spatial distribution of the components of carbon cycle in soils of forest ecosystems of the northern, middle, and southern taiga of Western Siberia,” Eurasian Soil Sci. 53 (11), 1549–1560 (2020). https://doi.org/10.1134/S1064229320110058

    Article  Google Scholar 

  5. T. I. Volodina, G. A. Romanov, and A. N. Levchenkova, “Influence of various fertilizer systems on the physicochemical and agrophysical indices of soddy-podzolic soil in northwestern Russia,” Agrokhimiya, No. 3, 12–21 (2014).

    Google Scholar 

  6. E. G. Gavrilenko, E. A. Susyan, N. D. Anan’eva, and O. A. Makarov, “Spatial variability in the carbon of microbial biomass and microbial respiration in soils of the south of Moscow oblast,” Eurasian Soil Sci. 44 (10), 1125–1138 (2011).

    Article  Google Scholar 

  7. M. I. Gerasimova, T. V. Ananko, and N. V. Savitskaya, “Approaches to the introduction of human-modified soils in the updated version of the soil map of Russia, 1 : 2.5 M scale (by the example of Moscow oblast),” Eurasian Soil Sci. 53 (1), 16–26 (2020). https://doi.org/10.1134/S1064229320010081

  8. V. F. Drichko, A. V. Litvinovich, O. Yu. Pavlova, D. V. Chernov, and V. M. Bure, “Rates of change in acid-base parameters, total carbon content, and humus composition in soddy-podzolic sandy soil during the transition from arable land to forest during succession on fallow lands,” Agrokhimiya, No. 11, 19–29 (2015).

    Google Scholar 

  9. I. A. Dubrovina, “Changes in the content of total carbon, nitrogen, and phosphorus in soils of the taiga zone of the Republic of Karelia during agricultural use,” Vestn. Tomsk. Gos. Univ., Biol., No. 41, 27–41 (2018). https://doi.org/10.17223/19988591/41

  10. I. A. Dubrovina, E. V. Moshkina, V. A. Sidorova, A. V. Tuyunen, A. Yu. Karpechko, N. V. Genikova, M. V. Medvedeva, A. V. Mamai, O. V. Tolstoguzov, and L. M. Kulakova, “The impact of land use on soil properties and structure of ecosystem carbon stocks in the middle taiga subzone of Karelia,” Eurasian Soil Sci. 54 (11), 1756–1769 (2021). https://doi.org/10.31857/S0032180X21110058

    Article  Google Scholar 

  11. N. E. Zavyalova, M. T. Vasbieva, and D. S. Fomin, “Microbial biomass, respiratory activity, and nitrogen fixation in soddy-podzolic soils of the Pre-Urals area under various agricultural uses,” Eurasian Soil Sci. 53 (3), 383–388 (2020). https://doi.org/10.1134/S1064229321110053

    Article  Google Scholar 

  12. K. V. Ivashchenko, N. D. Ananyeva, V. I. Vasenev, V. N. Kudeyarov, and R. Valentini, “Biomass and respiration activity of soil microorganisms in anthropogenically transformed ecosystems (Moscow region),” Eurasian Soil Sci. 47 (9), 892–903 (2014). https://doi.org/10.1134/S1064229314090051

    Article  Google Scholar 

  13. A. Kazlauskaite-Yadzyaviche, L. Tripol’skaya, I. Volungevichyus, and E. Bakshene, “Changes in the properties of sandy soil after conversion of cropland to other land uses,” Agrokhimiya, No. 1, 25–32 (2020). https://doi.org/10.31857/S0002188120010044

    Article  Google Scholar 

  14. Karelia. Encyclopedia, Ed. by A. F. Titov (PetroPress, Petrozavodsk, 2009), Vol. 2 [in Russian].

    Google Scholar 

  15. B. M. Kogut, “Assessment of the humus content in arable soils of Russia,” Eurasian Soil Sci. 45 (9), 843–851 (2012).

    Article  Google Scholar 

  16. A. I. Kuznetsova, N. V. Lukina, A. V. Gornov, M. V. Gornova, E. V. Tikhonova, V. E. Smirnov, M. A. Danilova, D. N. Tebenkova, T. Yu. Braslavskaya, V. A. Kuznetsov, Yu. N. Tkachenko, and N. V. Genikova, “Carbon stock in sandy soils of pine forests in the west of Russia,” Eurasian Soil Sci. 53 (8), 1056–1065 (2020). https://doi.org/10.1134/S1064229320080104

    Article  Google Scholar 

  17. A. I. Kuznetsova, N. V. Lukina, E. V. Tikhonova, A. V. Gornov, M. V. Gornova, V. E. Smirnov, A. P. Geraskina, N. E. Shevchenko, D. N. Tebenkova, and S. I. Chumachenko, “Carbon stock in sandy and loamy soils of coniferous–broadleaved forests at different succession stages,” Eurasian Soil Sci. 52 (7), 756–768 (2019). https://doi.org/10.1134/S1064229319070081

    Article  Google Scholar 

  18. A. V. Litvinovich, “Postagrogenic evolution of well-cultivated soddy-podzolic soils in the northwest of the nonchernozemic zone,” Agrokhimiya, No. 7, 85–93 (2009).

    Google Scholar 

  19. A. V. Litvinovich, “Spatial heterogeneity of agrochemical indices of arable soddy-podzolic soils,” Agrokhimiya, No. 5, 89–94 (2007).

    Google Scholar 

  20. A. V. Litvinovich, V. F. Drichko, O. Yu. Pavlova, D. V. Chernov, and M. V. Shabanov, “Changes in the acid-base properties of cultivated light-textured soddy-podzolic soils in the course of postagrogenic transformation,” Eurasian Soil Sci. 42 (6), 629–635 (2009).

    Article  Google Scholar 

  21. D. I. Lyuri, S. V. Goryachkin, N. A. Karavaeva, E. A. Shchenisenko, and T. T. Nefedova, Dynamics of Agricultural Lands in Russia in the 20th Century and Post-Agrogenic Restoration of Vegetation and Soils (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  22. D. I. Lyuri, A. S. Nekrich, and D. V. Karelin, “Change in arable land in Russia in 1990–2015 and soil emissions of carbon dioxide,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 70–76 (2018).

  23. L. V. Nikitina and I. V. Volodarskaya, “Dynamics of exchangeable potassium and its minimum levels in agrocenoses on soddy-podzolic soils,” Agrokhimiya, No. 2, 14–18 (2007).

    Google Scholar 

  24. Soils of Moscow Oblast and Their Use (Dokuchaev Soil Science Institute, Moscow, 2002), Vol. 1 [in Russian].

  25. I. M. Ryzhova, V. M. Telesnina, and A. A. Sitnikova, “Dynamics of soil properties and carbon stocks structure in postagrogenic ecosystems of southern taiga during natural reforestation,” Eurasian Soil Sci. 53 (2), 240–252 (2020). https://doi.org/10.1134/S1064229320020106

    Article  Google Scholar 

  26. N. E. Samsonova and S. N. Rodchenkov, “Use of fertilizers with reduced solubility of the phosphate component and the phosphate state of soddy-podzolic soils,” Agrokhimiya, No. 9, 24–31 (2007).

    Google Scholar 

  27. V. M. Telesnina, I. E. Vaganov, A. A. Karlsen, A. E. Ivanova, M. A. Zhukov, and S. M. Lebedev, “Specific features of the morphology and chemical properties of coarse-textured postagrogenic soils of the southern taiga, Kostroma oblast,” Eurasian Soil Sci. 49 (1), 102–115 (2016). https://doi.org/10.1134/S1064229316010117

    Article  Google Scholar 

  28. V. M. Telesnina and M. A. Zhukov, “The influence of agricultural land use on the dynamics of biological cycling and soil properties in the course of postagrogenic succession (Kostroma oblast),” Eurasian Soil Sci. 52 (9), 1122–1136 (2019). https://doi.org/10.1134/S1064229319070135

    Article  Google Scholar 

  29. V. D. Tonkonogov, I. I. Lebedeva, M. I. Gerasimova, and S. F. Khokhlov, “Ecological niches of major soil types in Russia: geographical aspects of the new Russian soil classification system,” Eurasian Soil Sci. 42 (9), 967–975 (2009).

    Article  Google Scholar 

  30. O. V. Chernova, I. M. Ryzhova, and M. A. Podvezennaya, “The effect of historical and regional features of land use on the size and structure of carbon pools in the southern taiga and forest-steppe zones of European Russia,” Eurasian Soil Sci. 51 (6), 709–719 (2018). https://doi.org/10.1134/S106422931804004X

    Article  Google Scholar 

  31. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  32. S. M. Bell, C. Barriocanal, C. Terrer, and A. Rosell-Mele, “Management opportunities for soil carbon sequestration following agricultural land abandonment,” Environ. Sci. Policy 108, 104–111 (2020). https://doi.org/10.1016/j.envsci.2020.03.018

    Article  Google Scholar 

  33. J. E. Campbell, D. B. Lobell, R. C. Genova, and C. B. Field, “The global potential of bioenergy on abandoned agriculture lands,” Environ. Sci. Technol. 42, 5791–5794 (2008). https://doi.org/10.1021/es800052w

    Article  Google Scholar 

  34. J. J. Feddema, K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, “The importance of land-cover change in simulating future climates,” Science 310, 1674–1678 (2005).

    Article  Google Scholar 

  35. A. Girona-Garcia, D. Badia-Villas, N. T. Jimenez-Morillo, J. V. de la Rosa, and J. A. Gonzalez-Perez, “Soil C and N isotope composition after a centennial Scots pine afforestation in podzols of native European beech forests in NE-Spain,” Catena 165, 434–441 (2018). https://doi.org/10.1016/j.catena.2018.02.023

    Article  Google Scholar 

  36. A. Heinimann, O. Mertz, S. Frolking, A. E. Christensen, K. Hurni, F. Sedano, L. P. Chini, R. Sahajpal, M. Hansen, and G. Hurtt, “A global view of shifting cultivation: recent, current, and future extent,” PLoS One 12, (2017). https://doi.org/10.1371/journal.pone.0184479

  37. IPCC Special Report. Climate Change and Land. Summary for Policymakers (Geneva, 2019).

  38. O. Kalinina, S. V. Goryachkin, D. I. Lyuri, and L. Giani, “Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia,” Catena 129, 18–29 (2015). https://doi.org/10.1016/j.catena.2015.02.016

    Article  Google Scholar 

  39. J. Kern, L. Giani, W. Teixeira, G. Lanza, and B. Glaser, “What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration?,” Catena 172, 104–112 (2019). https://doi.org/10.1016/j.catena.2018.08.008

    Article  Google Scholar 

  40. I. Kögel-Knabner and W. Amelung, “Soil organic matter in major pedogenic soil groups,” Geoderma 384, art. 114785 (2021). https://doi.org/10.1016/j.geoderma.2020.114785

    Article  Google Scholar 

  41. Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being (Island Press, Washington, DC, 2005).

  42. A. F. Osipov, K. S. Bobkova, and A. A. Dymov, “Carbon stocks of soils under forest in the Komi Republic of Russia,” Geoderma Reg. 27, (2021). https://doi.org/10.1016/j.geodrs.2021.e00427

  43. P. Pereira, “Ecosystem services in a changing environment,” Sci. Total Environ. 702, art. 135008 (2020). https://doi.org/10.1016/j.scitotenv.2019.135008

    Article  Google Scholar 

  44. C. Poeplau and A. Don, “Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe,” Geoderma 192, 189–201 (2013). https://doi.org/10.1016/j.geoderma.2012.08.003

    Article  Google Scholar 

  45. C. J. E. Schulp and P. H. Verburg, “Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region,” Agric. Ecosyst. Environ. 133, 86–97 (2009). https://doi.org/10.1016/j.agee.2009.05.005

    Article  Google Scholar 

  46. E. Thiffault, K. D. Hannam, S. A. Quideau, D. Pare, N. Belanger, S. -W. Oh, and A. D. Munson, “Chemical composition of forest floor and consequences for nutrient availability after wildfire and harvesting in the boreal forest,” Plant Soil 308, 37–53 (2008).

    Article  Google Scholar 

  47. W. Thuiller, “Climate change and the ecologist,” Nature 448, 550–552 (2007). https://doi.org/10.1038/448550a

    Article  Google Scholar 

  48. P. H. Verburg, K. -H. Erb, O. Mertz, and G. Espindola, “Land system science: between global challenges and local realities,” Curr. Opin. Environ. Sustainability 5, 433–437 (2013). https://doi.org/10.1016/j.cosust.2013.08.001

    Article  Google Scholar 

  49. L. Vesterdal, N. Clarke, B. D. Sigurdsson, and P. Gundersen, “Do tree species influence soil carbon stocks in temperate and boreal forests?,” For. Ecol. Manage. 309, 4–18 (2013). https://doi.org/10.1016/j.foreco.2013.01.017

    Article  Google Scholar 

  50. B. Wang, S. An, C. Liang, Y. Liu, and Y. Kuzyakov, “Microbial necromass as the source of soil organic carbon in global ecosystems,” Soil Biol. Biochem. 162, (2021). https://doi.org/10.1016/j.soilbio.2021.108422

  51. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 106 (FAO, Rome).

Download references

ACKNOWLEDGMENTS

The authors are grateful to T.V. Bogdanova, G.I. Demina, A.G. Kashtanova, and L.I. Skorokhodova for assistance in field and analytical work.

Funding

This study was performed within the framework of state assignment of the Karelian Research Center of the Russian Academy of Sciences no. FMEN-2022-0012 on the equipment of the Collective Use Center and partly supported by the Russian Foundation for Basic Research, project no. 19-29-05153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dubrovina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovina, I.A., Moshkina, E.V., Tuyunen, A.V. et al. Dynamics of Soil Properties and Ecosystem Carbon Stocks for Different Types of Land Use (Middle Taiga of Karelia). Eurasian Soil Sc. 55, 1209–1221 (2022). https://doi.org/10.1134/S1064229322090046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322090046

Keywords:

Navigation