Skip to main content
Log in

Development of Microbial Consortium for Bioremediation of Oil-Contaminated Soils in the Middle Ob Region

  • REMEDIATION OF POLLUTED SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Hydrocarbon-decomposing microorganisms identified as representatives of the genera Pseudomonas, Rhodococcus, Acinetobacter, Kocuria, Raoultella, and Candida have been isolated from the oil-contaminated soil samples of the Middle Ob region. They have been screened for the ability to decompose various classes of hydrocarbons in a wide temperature range (6–37°C), in acid media (up to pH 4), and at increased salinity (up to 3%), for the ability to produce biosurfactants, and for the presence of genes encoding enzymes responsible for hydrocarbon decomposition. A microbial consortium has been suggested as the basis of a biological preparation for bioremediation of oil-contaminated soils in the Middle Ob region, including strains of Candida fluviatilis 24p-51, Rhodococcus erythropolis 24-44, Acinetobacter calcoaceticus 7-43, and Pseudomonas extremaustralis 7-31. The modes of cultivation and lyophilization of biomass have been determined for these microorganisms. The efficiency of degradation of oil hydrocarbons by the developed microbial consortium has been evaluated in laboratory model systems. The degree of oil degradation by the microbial consortium in the liquid mineral medium was 56%; in the model soil, 22% in 10 days at 24°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. N. A. Avetov, O. L. Kuznetsov, and E. A. Shishkonakova, “Soils of oligomesotrophic and mesotrophic bogs in the boreal zone of West Siberia: possibilities of botanical diagnostics within the framework of the type of mesotrophic peat soils,” Eurasian Soil Sci. 54, 689–701 (2021). https://doi.org/10.1134/S1064229321030029

    Article  Google Scholar 

  2. N. A. Avetov and E. A. Shishkonakova, “Oil pollution of soils in the taiga zone of Western Siberia,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 68, 45–55 (2011).

    Google Scholar 

  3. A. A. Vetrova, A. A. Ivanova, A. E. Filonov, V. A. Zabelin, A. B. Gafarov, S. L. Sokolov, I. A. Nechaeva, I. F. Puntus, and A. M. Boronin, “Biodegradation of oil by the strains and principles of composition of microbial consortiums for cleaning the environment from petroleum hydrocarbons,” Izv. Tul’sk. Gos. Univ., Estestv. Nauki, No. 2, 241–257 (2013).

    Google Scholar 

  4. Yu. S. Drugov and A. A. Rodin, Ecological Analysis of in Case of Spills of Oil and Petroleum Products: Practical Guide (BINOM. Laboratoriya Znanii, Moscow, 2007) [in Russian].

  5. T. Yu. Izmalkova, O. I. Sazonova, S. L. Sokolov, I. A. Kosheleva, and A. M. Boronin, “The P-7 incompatibility group plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads,” Microbiology (Moscow) 74, 290–295 (2005).

    Article  Google Scholar 

  6. M. S. Kuyukina and I. B. Ivshina, RF Patent No. 2180276, Byull. Izobret., No. 7 (2002).

  7. T. Maniatis, E. F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982; Mir, Moscow, 1984).

  8. PND F 16.1:2.2.22-98. Guide for Measurement of Mass Fraction of Petroleum Products in Mineral, Organogenic, Organomineral Soils and Bottom Sediments by IR Spectrometry (Moscow, 1998) [in Russian].

  9. K. V. Petrikov, Candidate’s Dissertation in Chemistry (Moscow, 2011).

  10. Practical Guide on Soil Science, Ed. by N. F. Ganzhara (Agrokonsalt, Moscow, 2002) [in Russian].

    Google Scholar 

  11. O. I. Sazonova, A. A. Vetrova, A. B. Gafarov, and S. L. Sokolov, “Isolation of epiphytic strains Aureobasidium pullulans producing high-molecular extracellular polysaccharides,” Izv. Tul’sk. Gos. Univ., Estestv. Nauki, No. 4, 24–31 (2017).

    Google Scholar 

  12. O. I. Sazonova, A. A. Vetrova, R. A. Streletskii, A. B. Gafarov, I. A. Kosheleva, A. E. Filonov, and S. L. Sokolov, “Strains Pseudomonas extremaustralis 7–31 and Pseudomonas fluorescens 7–41 degrading aliphatic and aromatic hydrocarbons,” Izv. Tul’sk. Gos. Univ., Estestv. Nauki, No. 3, 31–43 (2019).

    Google Scholar 

  13. V. P. Seredina, E. V. Kolesnikova, V. A. Kondykov, A. I. Nepotrebnyi, and S. A. Ognev, “Specific impact of oil pollution on soils of the middle taiga of Western Siberia,” Neft. Khoz., No. 5, 108–112 (2017).

  14. S. Ya. Trofimov, A. V. Arzamazova, R. R. Kinzhaev, N. A. Avetov, and M. M. Karpukhin, “Mineralization of organic matter in petroleum-polluted and background soils of the Middle Ob region in laboratory conditions,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 51–56 (2021).

  15. R. Alonso, A. Martín, T. Peláez, M. Marín, M. Rodríguez-Creixéms, and E. Bouza, “An improved protocol for pulsed-field gel electrophoresis typing of Clostridium difficile,” J. Medical Microbiol. 54 (2), 155–157 (2005). https://doi.org/10.1099/jmm.0.45808-0

    Article  Google Scholar 

  16. E. Antoniou, S. Fodelianakis, E. Korkakaki, and N. Kalogerakis, “Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source,” Front. Microbiol. 6, 274 (2015). https://doi.org/10.3389/fmicb.2015.00274

    Article  Google Scholar 

  17. M. G. Barron, D. N. Vivian, R. A. Heintz, and U. H. Yim, “Long-term ecological impacts from oil spills: comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon,” Environ. Sci. Technol. 54 (11), 6456–6467 (2020). https://doi.org/10.1021/acs.est.9b05020

    Article  Google Scholar 

  18. BLAST. http://www.ncbi.nlm.nih.gov/BLAST.

  19. R. J. W. Brooijmans, M. I. Pastink, and R. J. Siezen, “Hydrocarbon-degrading bacteria: the oil-spill clean-up crew,” Microb. Biotechnol. 2 (6), 587–594 (2009). https://doi.org/10.1111/j.1751-7915.2009.00151.x

    Article  Google Scholar 

  20. L. Cabral, P. Giovanella, E. P. Pellizzer, E. H. Teramoto, C. H. Kiang, and L. D. Sette, “Microbial communities in petroleum-contaminated sites: structure and metabolisms,” Chemosphere 286 (2), 131752 (2022). https://doi.org/10.1016/j.chemosphere.2021.131752

    Article  Google Scholar 

  21. A. Dasgupta, R. Saikia, and P. J. Handique, “Mapping the bacterial community in Digboi oil refinery, India by high-throughput sequencing approach,” Curr. Microbiol. 75 (11), 1441–1446 (2018). https://doi.org/10.1007/s00284-018-1541-x

    Article  Google Scholar 

  22. J. Davies and W. Evans, “Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism,” Biochem. J. 91 (2), 251–261 (1964). https://doi.org/10.1042/bj0910251

    Article  Google Scholar 

  23. L. Derguine-Mecheri, S. Kebbouche-Gana, and D. Djenane, “Biosurfactant production from newly isolated Rhodotorula sp. YBR and its great potential in enhanced removal of hydrocarbons from contaminated soils,” World J. Microbiol. Biotechnol. 37 (1), 18 (2021). https://doi.org/10.1007/s11274-020-02983-3

    Article  Google Scholar 

  24. H. P. Doddamani and H. Z. Ninnekar, “Biodegradation of carbaryl by a Micrococcus species,” Curr. Microbiol. 43 (1), 69–73 (2001). https://doi.org/10.1007/s002840010262

    Article  Google Scholar 

  25. P. Elumalai, P. Parthipan, M. Huang, B. Muthukumar, L. Cheng, M. Govarthanan, and A. Rajasekar, “Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants,” Environ. Pollut. 289, 117956 (2021). https://doi.org/10.1016/j.envpol.2021.117956

    Article  Google Scholar 

  26. C. G. T. Evans, D. Herbert, and D. W. Tempest, “The continuous cultivation of microorganisms: 2. Construction of a chemostat,” in Methods in Microbiology (Elsevier, Amsterdam, 1970), Vol. 2, Ch. 13, pp. 277–327.

  27. W. Evans, H. Fernley, and E. Griffiths, “Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism,” Biochem. J. 95 (3), 819–831. 1965). https://doi.org/10.1042/bj0950819

    Article  Google Scholar 

  28. GeneJET PCR Purification Kit. https://www.thermofisher.com/order/catalog/product/K0702.

  29. J. J. Germida, C. M. Frick, and R. E. Farrell, “Phytoremediation of oil-contaminated soils,” in Developments in Soil Science (Elsevier, Amsterdam, 2002), Vol. 28, Part 2, pp. 169–186. https://doi.org/10.1016/S0166-2481(02)80015-0

  30. J. B. Herrick, K. G. Stuart-Keil, W. C. Ghiorse, and E. L. Madsen, “Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site,” Appl. Environ. Microbiol. 63 (6), 2330–2337 (1997). https://doi.org/10.1128/aem.63.6.2330-2337.1997

    Article  Google Scholar 

  31. H. Kiyohara, S. Torigoe, N. Kaida, T. Asaki, T. Iida, H. Hayashi, and N. Takizawa, “Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82,” J. Bacteriol. 176 (8), 2439–2443 (1994). https://doi.org/10.1128/jb.176.8.2439-2443.1994

    Article  Google Scholar 

  32. E. Koshlaf and A. Ball, “Soil bioremediation approaches for petroleum hydrocarbon polluted environments,” AIMS Microbiol. 3 (1), 25–49 (2017). https://doi.org/10.3934/microbiol.2017.1.25

    Article  Google Scholar 

  33. M. J. Larkin and M. J. Day, “The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCIB 12042 & 12043) and Rhodococcus sp. (NCIB 12038) from garden soil,” J. Appl. Bacteriol. 60 (3), 233–242 (1986). https://doi.org/10.1111/j.1365-2672.1986.tb01078.x

    Article  Google Scholar 

  34. A. D. Laurie and G. Lloyd-Jones, “Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR,” Appl. Environ. Microbiol. 66 (5), 1814–1817 (2000). https://doi.org/10.1128/AEM.66.5.1814-1817.2000

    Article  Google Scholar 

  35. Ł. Ławniczak, M. Woźniak-Karczewska, A. P. Loibner, H. J. Heipieper, and Ł. Chrzanowski, “Microbial degradation of hydrocarbons—basic principles for bioremediation: a review,” Molecules 25 (4), 856 (2020). https://doi.org/10.3390/molecules25040856

    Article  Google Scholar 

  36. X. Li, L. Zhao, and M. Adam, “Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China,” Mar. Pollut. Bull. 105 (1), 43–50 (2016). https://doi.org/10.1016/j.marpolbul.2016.02.073

    Article  Google Scholar 

  37. A. R. Markande, D. Patel, and S. Varjani, “A review on biosurfactants: properties, applications and current developments,” Bioresour. Technol. 330, 124963 (2021).

    Article  Google Scholar 

  38. G. T. Mehetre, S. G. Dastager, and M. S. Dharne, “Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria,” Sci. Total Environ. 679, 52–60 (2019).

    Article  Google Scholar 

  39. S. Mnif, M. Chamkha, and S. Sayadi, “Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions,” J. Appl. Microbiol. 107 (3), 785–794 (2009). https://doi.org/10.1111/j.1365-2672.2009.04251.x

    Article  Google Scholar 

  40. Y. Nie, C.-Q. Chi, H. Fang, J.-L. Liang, S.-L. Lu, G.‑L. Lai, Y.-Q. Tang, and X.-L. Wu, “Diverse alkane hydroxylase genes in microorganisms and environments,” Sci. Rep. 4 (1), 4968 (2014).

    Article  Google Scholar 

  41. S. Patel, A. Homaei, S. Patil, and A. Daverey, “Microbial biosurfactants for oil spill remediation: pitfalls and potentials,” Appl. Microbiol. Biotechnol. 103 (1), 27–37 (2019). https://doi.org/10.1007/s00253-018-9434-2

    Article  Google Scholar 

  42. V. Patel, A. Sharma, R. Lal, N. A. Al-Dhabi, and D. Madamwar, “Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates,” BMC Microbiol. 16 (1), 50 (2016). https://doi.org/10.1186/s12866-016-0669-8

    Article  Google Scholar 

  43. R. Perdigão, C. M. R. Almeida, F. Santos, M. F. Carvalho, and A. P. Mucha, “Optimization of an autochthonous bacterial consortium obtained from beach sediments for bioremediation of petroleum hydrocarbons,” Water 13 (1), 66 (2020). https://doi.org/10.3390/w13010066

    Article  Google Scholar 

  44. A. V. Poliakova, I. I. Chernov, and N. S. Panikov, “Yeast biodiversity in hydromorphic soils with reference to grass-Sphagnum swamp in Western Siberia and the hammocky tundra region (Barrow, Alaska),” Mikrobiologiia 70 (5), 714–20 (2001). https://doi.org/10.1023/A:1012328710111

    Article  Google Scholar 

  45. R. A. Rosselló-Mora, J. Lalucat, and E. García-Valdés, Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains,” Appl. Environ. Microbiol. 60 (3), 966–972 (1994). https://doi.org/10.1128/aem.60.3.966-972.1994

    Article  Google Scholar 

  46. J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 2001).

    Google Scholar 

  47. J. Sanseverino, B. M. Applegate, J. M. King, and G. S. Sayler, “Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene,” Appl. Environ. Microbiol. 59 (6), 1931–1937 (1993). https://doi.org/10.1128/aem.59.6.1931-1937.1993

    Article  Google Scholar 

  48. K. N. Timmis, P. R. Lehrbach, S. Harayama, R. H. Don, N. Mermod, S. Bas, R. Leppik, A. J. Weightman, W. Reineke, and H. J. Knackmuss, “Analysis and manipulation of plasmid-encoded pathways for the catabolism of aromatic compounds by soil bacteria,” in Plasmids in Bacteria, Ed. by D. R. Helinski, S. N. Cohen, (Plenum, New York, 1985), pp. 719–739.

    Google Scholar 

  49. M. Tyagi, M. M. R. da Fonseca, and C. C. C. R. de Carvalho, “Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes,” Biodegradation 22 (2), 231–241 (2011). https://doi.org/10.1007/s10532-010-9394-4

    Article  Google Scholar 

  50. S. Viggor, J. Juhanson, M. Jõesaar, M. Mitt, J. Truu, E. Vedler, and A. Heinaru, “Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel,” Microbiol. Res. 168 (7), 415–427 (2013). https://doi.org/10.1016/j.micres.2013.02.006

    Article  Google Scholar 

  51. V. Walter, C. Syldatk, and R. Hausmann, “Screening concepts for the isolation of biosurfactant producing microorganisms,” in Biosurfactants, Ed. by R. Sen (Springer-Verlag, New York, 2010), pp. 1–13. https://doi.org/10.1007/978-1-4419-5979-9_1

  52. Y. Yang, J. Wang, J. Liao, S. Xie, and Y. Huang, “Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas,” Appl. Microbiol. Biotechnol. 99 (4), 1935–1946 (2015). https://doi.org/10.1007/s00253-014-6074-z

    Article  Google Scholar 

  53. Z.-F. Zhou, M.-X. Wang, X.-H. Zuo, and Y.-H. Yao, “Comparative investigation of bacterial, fungal, and archaeal community structures in soils in a typical oilfield in Jianghan, China,” Arch. Environ. Contam. Toxicol. 72 (1), 65–77 (2017). https://doi.org/10.1007/s00244-016-0333-1

    Article  Google Scholar 

  54. S. Zinjarde, M. Apte, P. Mohite, and A. R. Kumar, “Yarrowia lipolytica and pollutants: Interactions and applications,” Biotechnol. Adv. 32 (5), 920–933 (2014). https://doi.org/10.1016/j.biotechadv.2014.04.008

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of state assignment of the Ministry of Science and Higher Education of the Russian Federation no. № 121041300098-7 and, partly, within the framework of the development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University “Future of the Planet and Global Environmental Changes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vetrova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrova, A.A., Trofimov, S.Y., Kinzhaev, R.R. et al. Development of Microbial Consortium for Bioremediation of Oil-Contaminated Soils in the Middle Ob Region. Eurasian Soil Sc. 55, 651–662 (2022). https://doi.org/10.1134/S1064229322050106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322050106

Keywords:

Navigation