Skip to main content
Log in

Nitrogen and Phosphorus Additions Impact Stability of Soil Organic Carbon and Nitrogen in Subtropical Evergreen Broad-Leaved Forest

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Atmospheric nitrogen (N) deposition can have a series of effects on forest ecosystems. As N deposition increases N availability in forest ecosystems, soil phosphorus (P) becomes a limiting factor for forest productivity. However, it is not clear whether long-term N deposition can affect on soil carbon (C) and N stability, and whether the addition of P can moderate the impact of N deposition. A five-year experiment of N and N + P additions was conducted in a subtropical evergreen broad-leaved forest in eastern China. The seasonal dynamics of soil C and N and the abundance of their stable isotopes (δ13C and δ15N) were investigated in the 0–30 cm layer. Soil C, N and δ13C and δ15N abundances had significant vertical distribution characteristics. Soil C and N contents increased significantly under N and N + P additions, especially in the topsoil (0–10 cm); δ13C did not change significantly under N and N + P additions, but the linear slope (β) between δ13C and soil organic carbon (SOC) and C/N indicated that N + P addition slowed down the decomposition rate and enhanced the stability of SOC. Soil δ15N increased significantly under N and N + P additions, and enriched with the increase of seasonal temperature. Our findings implied that the linear slope of δ13C and SOC (β) and C/N can serve as potential indicators of soil C stability under N and N + P additions in subtropical forests. The soil δ13C and δ15N abundance was affected by the interaction between soil C and N. δ13C abundance showed no significant response of the stability of SOC to N and N + P additions. It suggests that the further study is needed to reveal their response mechanisms to long-term N deposition in subtropical forest ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. Acton, J. Fox, E. Campbell, H. Rowe, and M. Wilkinson, “Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils,” J. Geophys. Res.: Biogeosci. 118 (4), 1532–1545 (2013). https://doi.org/10.1002/2013JG002400

    Article  Google Scholar 

  2. M. Bird, H. Santrùcková, J. Lloyd, and E. Lawson, “The isotopic composition of soil organic carbon on a north–south transect in western Canada,” Eur. J. Soil Sci. 53 (3), 393–403 (2002). https://doi.org/10.1046/j.1365-2389.2002.00444.x

    Article  Google Scholar 

  3. J. E. Campbell, J. F. Fox, C. M. Davis, H. D. Rowe, and N. Thompson, “Carbon and nitrogen isotopic measurements from southern Appalachian soils: assessing soil carbon sequestration under climate and land-use variation,” J. Environ. Eng. 135 (6), 439–448 (2009). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000008

    Article  Google Scholar 

  4. J. M. Craine, A. J. Elmore, L. Wang, L. Augusto, W. T. Baisden, E. N. Brookshire, M. D. Cramer, N. J. Hasselquist, et al., “Convergence of soil nitrogen isotopes across global climate gradients,” Sci. Rep. 5, 8280 (2015). https://doi.org/10.1038/srep08280

    Article  Google Scholar 

  5. J. M. Craine, E. N. J. Brookshire, M. D. Cramer, N. J. Hasselquist, K. Koba, E. Marin-Spiotta, and L. Wang, “Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils,” Plant Soil 396, 1–26 (2015). https://doi.org/10.1007/s11104-015-2542-1

    Article  Google Scholar 

  6. M. A. Dawes, P. Schleppi, S. Hättenschwiler, C. Rixen, and F. Hagedorn, “Soil warming opens the nitrogen cycle at the alpine treeline,” Global Change Biol. 23 (1), 421–434 (2017). https://doi.org/10.1111/gcb.13365

    Article  Google Scholar 

  7. M. Deng, L. Liu, Z. Sun, S. Piao, Y. Ma, Y. Chen, J. Wang, C. Qiao, X. Wang, and P. Li, “Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations,” New Phytol. 212 (4), 1019–1029 (2016). https://doi.org/10.1111/nph.14083

    Article  Google Scholar 

  8. A. Diochon and L. Kellman, “Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance,” Geophys. Res. Lett. 35 (14), L14402 (2008). https://doi.org/10.1029/2008GL034795

    Article  Google Scholar 

  9. T. F. Dong, B. L. Duan, S. Zhang, H. Korpelainen, U. Niinemets, and C. Y. Li, “Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree Cunninghamia lanceolata,” Tree Physiol. 36 (7), 807–817 (2016). https://doi.org/10.1093/treephys/tpw025

    Article  Google Scholar 

  10. B. Du, C. Liu, H. Kang, P. Zhu, S. Yin, G. Shen, J. Hou, and H. Ilvesniemi, “Climatic control on plant and soil δ13C along an altitudinal transect of Lushan Mountain in subtropical China: characteristics and interpretation of soil carbon dynamics,” PLoS One 9 (1), e86440 (2014). https://doi.org/10.1371/journal.pone.0086440

    Article  Google Scholar 

  11. J. R. Ehleringer, N. Buchmann, and L. B. Flanagan, “Carbon isotope ratios in belowground carbon cycle processes,” Ecol. Appl. 10 (2), 412–422 (2000). https://doi.org/10.1890/1051-0761(2000)010

    Article  Google Scholar 

  12. X. M. Fang, X. L. Zhang, F. S. Chen, Y. Y. Zong, W. S. Bu, S. Z. Wan, Y. Luo, and H. Wang, “Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest,” Soil Biol. Biochem. 133, 119–128 (2019). https://doi.org/10.1016/j.soilbio.2019.03.005

    Article  Google Scholar 

  13. T. Guillaume, M. Damris, and Y. Kuzyakov, “Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C,” Global Change Biol. 21 (9), 3548–3560 (2015). https://doi.org/10.1111/gcb.12907

    Article  Google Scholar 

  14. K. Lang, K. E. Stenstrom, A. Rosso, M. Bech, S. Zackrisson, D. Graubau, and S. Mattsson, “14C bomb-pulse dating and stable isotope analysis for growth rate and dietary information in breast cancer?” Radiat. Prot. Dosim. 169 (1–4), 158–164 (2016). https://doi.org/10.1093/rpd/ncw107

    Article  Google Scholar 

  15. J. Li, S. Ziegler, C. S. Lane, and S. A. Billings, “Warming-enhanced preferential microbial mineralization of humified boreal forest soil organic matter: Interpretation of soil profiles along a climate transect using laboratory incubations,” J. Geophys. Res.: Biogeosci. 117, G02008 (2012). https://doi.org/10.1029/2011JG001769

    Article  Google Scholar 

  16. J. Li, S. E. Ziegler, C. S. Lane, and S. A. Billings, “Legacies of native climate regime govern responses of boreal soil microbes to litter stoichiometry and temperature,” Soil Biol. Biochem. 66, 204–213 (2013). https://doi.org/10.1016/j.soilbio.2013.07.018

    Article  Google Scholar 

  17. J. Liu, C. Wang, B. Peng, Z. Xia, P. Jiang, and E. Bai, “Effect of nitrogen addition on the variations in the natural abundance of nitrogen isotopes of plant and soil components,” Plant Soil 412 (1–2), 453–464 (2017). https://doi.org/10.1007/s11104-016-3081-0

    Article  Google Scholar 

  18. X. Liu, L. Duan, J. Mo, E. Du, J. Shen, X. Lu, Y. Zhang, X. Zhou, C. He, and F. Zhang, “Nitrogen deposition and its ecological impact in China: an overview,” Environ. Pollut. 159 (10), 2251–2264 (2011). https://doi.org/10.1016/j.envpol.2010.08.002

    Article  Google Scholar 

  19. M. Lu, Y. Yang, Y. Luo, C. Fang, X. Zhou, J. Chen, X. Yang, and B. Li, “Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis,” New Phytol. 189 (4), 1040–1050 (2011). https://doi.org/10.1111/j.1469-8137.2010.03563.x

    Article  Google Scholar 

  20. F. Magnani, M. Mencuccini, M. Borghetti, P. Berbigier, F. Berninger, S. Delzon, A. Grelle, et al., “The human footprint in the carbon cycle of temperate and boreal forests,” Nature 447, 848–850 (2007). https://doi.org/10.1038/nature05847

    Article  Google Scholar 

  21. A. Mariotti, D. Pierre, J. C. Vedy, S. Bruckert, and J. Guillemot, “The abundance of natural nitrogen-15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France),” Catena 7 (4), 293–300 (1980). https://doi.org/10.1016/S0341-8162(80)80020-8

    Article  Google Scholar 

  22. M. J. Y. Ngaba, Y. L. Hu, R. Bol, X. Q. Ma, S. F. Jin, and A. S. Mgelwa, “Effects of land use change from natural forest to plantation on C, N and natural abundance of 13C and 15N along a climate gradient in eastern China,” Sci. Rep. 9, 16516 (2019). https://doi.org/10.1038/s41598-019-52959-z

    Article  Google Scholar 

  23. J. A. Nel, J. M. Craine, and M. D. Cramer, “Correspondence between δ13C and δ15N in soils suggests coordinated fractionation processes for soil C and N,” Plant Soil 423, 257–271 (2018). https://doi.org/10.1007/s11104-017-3500-x

    Article  Google Scholar 

  24. L. H. Pardo, P. H. Templer, C. L. Goodale, S. Duke, P. M. Groffman, M. B. Adams, P. Boeckx, J. Boggs, J. Campbell, et al., “Regional assessment of N saturation using foliar and root δ15N,” Biogeochemistry 80 (2), 143–171 (2006). https://doi.org/10.1007/s10533-006-9015-9

    Article  Google Scholar 

  25. C. E. Prescott, L. M. Zabek, C. L. Staley, and R. Kabzems, “Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures,” Can. J. For. Res. 30, 1742–1750 (2000). https://doi.org/10.1139/x00-097

    Article  Google Scholar 

  26. C. R. Gonçalves Reis, G. Bielefeld Nardoto, A. L. Casarin Rochelle, S. Aparecida Vieira, and R. Silva Oliveira, “Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes,” Oecologia 183, 841–848 (2017). https://doi.org/10.1007/s00442-016-3789-9

    Article  Google Scholar 

  27. D. Tian, E. Du, L. Jiang, S. Ma, W. Zeng, A. Zou, C. Feng, L. Xu, A. Xing, W. Wang, C. Zheng, C. Ji, H. Shen, and J. Fang, “Responses of forest ecosystems to increasing N deposition in China: a critical review,” Environ. Pollut. 243, 75–86 (2018). https://doi.org/10.1016/j.envpol.2018.08.010

    Article  Google Scholar 

  28. D. Tian, L. Jiang, S. Ma, W. Fang, B. Schmid, L. Xu, J. Zhu, et al., “Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China,” Sci. Total Environ. 607–608, 1367–1375 (2017). https://doi.org/10.1016/j.scitotenv.2017.06.057

    Article  Google Scholar 

  29. P. M. Vitousek, S. Porder, B. Z Houlton, and O. A. Chadwick, “Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions,” Ecol. Appl. 20 (1), 5–15 (2010). https://doi.org/10.1890/08-0127.1

    Article  Google Scholar 

  30. M. Volk, S. Bassin, M. F. Lehmann, M. G. Johnson, and C. P. Andersen, “13C isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition,” Soil Biol. Biochem. 125, 178–184 (2018). https://doi.org/10.1016/j.soilbio.2018.07.014

    Article  Google Scholar 

  31. C. Wang, B. Z. Houlton, D. Liu, J. Hou, W. Cheng, and E. Bai, “Stable isotopic constraints on global soil organic carbon turnover,” Biogeosciences 15 (4), 987–995 (2018). https://doi.org/10.5194/bg-15-987-2018

    Article  Google Scholar 

  32. C. Wang, H. Wei, D. Liu, W. Luo, J. Hou, W. Cheng, X. Han, and E. Bai, “Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China,” Plant Soil 417 (1–2), 43–52 (2017). https://doi.org/10.1007/s11104-017-3233-x

    Article  Google Scholar 

  33. J.-J. Wang, R. D. Bowden, K. Lajtha, S. E. Washko, S. J. Wurzbacher, and M. J. Simpson, “Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter,” Biogeochemistry 142, 299–313 (2019). https://doi.org/10.1007/s10533-018-00535-4

    Article  Google Scholar 

  34. J. J. Wang, J. Cui, Z. Teng, W. Fan, M. R. Guan, X. Y. Zhao, and X. N. Xu, “Effects of simulated nitrogen deposition on soil microbial biomass and community function in subtropical evergreen broad-leaved forest,” For. Syst. 28 (3), e108 (2019). https://doi.org/10.5424/fs/2019283-15404

    Article  Google Scholar 

  35. W. Wang, Q. Mo, X. Han, D. Hui, and W. Shen, “Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest,” Biol. Fertil. Soils 55 (7), 723–736 (2019). https://doi.org/10.1007/s00374-019-01386-3

    Article  Google Scholar 

  36. X. Wang, H. Ren, F. H. Yu, and M. H. Li, “Leaf and soil δ15N patterns along elevational gradients at both treelines and shrublines in three different climate zones,” Forests 10 (7), 557 (2019). https://doi.org/10.3390/f10070557

    Article  Google Scholar 

  37. IUSS Working Group WRB, World Reference Base for Soil Resources, World Soil Resources Reports No. 103, 2nd ed. (UN Food and Agriculture Organization, Rome, 2006), p. 128.

    Google Scholar 

  38. L. Xiao, G. Liu, P. Li, and S. Xue, “Direct and indirect effects of elevated CO2 and nitrogen addition on soil microbial communities in the rhizosphere of Bothriochloa ischaemum,” J. Soils Sediments 19 (11), 3679–3687 (2019). https://doi.org/10.1007/s11368-019-02336-0

    Article  Google Scholar 

  39. C. H. Xu, X. N. Xu, C. Ju, H. Y. H. Chen, B. J. Wilsey, Y. Luo, and W. Fan, “Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide,” Global Change Biol. 27 (6), 1170–1180 (2021). https://doi.org/10.1111/gcb.15489

    Article  Google Scholar 

  40. X. F. Yi and Y. Q. Yang, “Enrichment of stable carbon and nitrogen isotopes of plant populations and plateau pikas along altitudes,” J. Anim. Sci. 15 (4), 661–667 (2006). https://doi.org/10.22358/jafs/66937/2006

    Article  Google Scholar 

  41. X. Y. Yu, Y. J. Zhu, B. Wang, D. Liu, H. Bai, L. Jin, B. T. Wang, et al., “Effects of nitrogen addition on rhizospheric soil microbial communities of poplar plantations at different ages,” For. Ecol. Manage. 494 (1), 119328 (2021). https://doi.org/10.1016/j.foreco.2021.119328

    Article  Google Scholar 

  42. Y. Yuan, Y. Li, Z. Mou, L. Kuang, W. Wu, J. Zhang, F. Wang, D. Hui, J. Peñuelas, J. Sardans, H. Lambers, J. Wang, Y. Kuang, Z. A. Li., and Z. Liu, “Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest,” Global Change Biol. 27 (2), 454–466 (2021). https://doi.org/10.1111/gcb.15407

    Article  Google Scholar 

  43. D. R. Zak, Z. B. Freedman, R. A. Upchurch, M. Steffens, and I. Kögel-Knabner, “Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition,” Global Change Biol. 23 (2), 933–944 (2017). https://doi.org/10.1111/gcb.13480

    Article  Google Scholar 

  44. J. F. Zhang, J. Li, Y. Fan, Q. Mo, Y. Li, Y. Li, Z. Li, and F. Wang, “Effect of nitrogen and phosphorus addition on litter decomposition and nutrients release in a tropical forest,” Plant Soil 454, 139–153 (2020). https://doi.org/10.1007/s11104-020-04643-9

    Article  Google Scholar 

  45. G. S. Zhang, X. Yu, J. Xu, H. Duan, L. Rafay, Q. Zhang, Y. Li, Y. Liu, and S. Xia, “Effects of environmental variation on stable isotope abundances during typical seasonal floodplain dry season litter decomposition,” Sci. Total Environ. 630, 1205–1215 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.298

    Article  Google Scholar 

  46. T. Zhang, H. Y. H. Chen, and H. Ruan, “Global negative effects of nitrogen deposition on soil microbes,” ISME J. 12 (7), 1817–1825 (2018). https://doi.org/10.1038/s41396-018-0096-y

    Article  Google Scholar 

  47. H. F. Zhao, X. J. Yao, Q. Wang, Y. S. Chen, and X. N. Xu, “Nitrogen deposition and soil nitrogen dynamics in subtropical evergreen broad-leaved stands along an age-sequence,” J. Soil Sci. Plant Nutr. 13 (2), 237–250 (2013). https://doi.org/10.4067/s0718-95162014005000001

    Article  Google Scholar 

  48. Y. Zhao, X. Wang, Y. Ou, H. Jia, J. Li, C. Shi, and Y. Liu, “Variations in soil δ13C with alpine meadow degradation on the eastern Qinghai–Tibet Plateau,” Geoderma 338, 178–186 (2019). https://doi.org/10.1016/j.geoderma.2018.12.005

    Article  Google Scholar 

  49. J. Zhu, N. He, Q. Wang, G. Yuan, D. Wen, G. Yu, and Y. Jia, “The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems,” Sci. Total Environ. 511 (1), 777–785 (2015). https://doi.org/10.1016/j.scitotenv.2014.12.038

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the Meteorological Station of Shitai County, Anhui Province, for provision of the climatic data.

Funding

This study was supported by the National Natural Science Foundation of China (NSFC, nos. 31770672 and 31370626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoniu Xu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huiling Wang, Wang, J., Teng, Z. et al. Nitrogen and Phosphorus Additions Impact Stability of Soil Organic Carbon and Nitrogen in Subtropical Evergreen Broad-Leaved Forest. Eurasian Soil Sc. 55, 425–436 (2022). https://doi.org/10.1134/S1064229322040159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322040159

Keywords:

Navigation