Skip to main content
Log in

Effects of Alpine Wetland Degradation on Soil Microbial Structure and Diversity on the Qinghai Tibet Plateau

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The characteristics of microbial structure in different soil degradation stages caused by the drought processes from wetland to meadow on the Qinghai Tibet Plateau were analyzed. The composition and diversity of soil bacteria and fungi were also analyzed by using high-throughput sequencing technology. The results showed that Proteobacteria was the highest abundance among bacteria, and Ascomycota was the highest among fungi. The degradation transition from alpine wetland to alpine meadow had insignificantly affected on the dominant bacteria, but had significantly affected on Gracilibаcteriaе and Ignavibacteriae bacterial phyla (P < 0.05), which characterized low abundance. The relative abundance of the dominant, fungal phyla Mortierellomycota (P < 0.05) significantly increased in soils along the degradation gradient. There was no significant difference between soil bacteria and fungi for Alpha diversity in different soil degradation stages. Beta diversity was found to be significant difference in soil bacterial structure for alpine swamp wetland and alpine meadow. Soil pH, water content, total organic carbon (TOC), total nitrogen (TN) decreased significantly (P < 0.05) with the degradation stages. RDA analysis showed that TN and TOC achieved the highest effect on the bacteria number expressed as operational taxonomic units and their Shannon index, moreover soil water content significantly affected on fungi number and Shannon index. TN and bacterial number had a significant positive correlation (P < 0.05). The relative abundance of Gracilibаcteriaе, Ignavibacteriae and Elusimicrobiaе, which are beneficial to soil C and N contents and that Gemmatimonadetes are beneficial to N fixation, decreased in the drought processes of alpine wetland. This result could increase the relative abundance of the fungi phylum of Mortierellomycota, and might decrease the soil microbial diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. F. Altschul, T. L. Madden, A. A. Schäffer, J. H. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Res. 25 (17), 3389–3402 (1997). https://doi.org/10.1093/nar/25.17.3389

    Article  Google Scholar 

  2. F. E. Clark and E. A. Paul, “The microflora of grassland,” Adv. Agron. 22, 375–435 (1970). https://doi.org/10.1016/S0065-2113(08)60273-4

    Article  Google Scholar 

  3. J. M. DeBruyn, L. T. Nixon, M. N. Fawaz, A. M. Johnson, and M. Radosevich, “Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil,” Appl. Environ. Microbiol. 77 (17), 6295–6300 (2011). https://doi.org/10.1128/AEM.05005-11

    Article  Google Scholar 

  4. N. Fierer, M. A. Bradford, and R. B. Jackson, “Toward an ecological classification of soil bacteria,” Ecology 88 (6), 1354–1364 (2007). https://doi.org/10.1890/05-1839

    Article  Google Scholar 

  5. Y. F. Gu, Y. Y. Wang, Q. J. Xiang, X. M. Yu, K. Zhao, X. P. Zhang, K. Lindstrm, Y. F. Hu, and S. Q. Liu, “Implications of wetland degradation for the potential denitrifying activity and bacterial populations with nirS genes as found in a succession in Qinghai-Tibet plateau, China,” Eur. J. Soil Biol. 80, 19–26 (2017). https://doi.org/10.1016/j.ejsobi.2017.03.005

    Article  Google Scholar 

  6. S. Hanna, L. Kaarina, L. M. Sihvonen, K. Sivonen, M. Leivuori, M. Rantanen, L. Paulin, C. Lyra, and V. Shah, “Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea,” PLoS One 8 (6), 67061 (2013). https://doi.org/10.1371/journal.pone.0067061

    Article  Google Scholar 

  7. C. F. He, Diversity and Community Structure of Soil Bacteria and Distribution and Function of QS Bacteria of Root Environment in Beidaihe Coastal Wetland (First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 2019).

    Google Scholar 

  8. X. S. Jia, Z. X. Xie, W. P. Li, W. H. Yang, S. Y. Jin, W. J. Liu, “A/SMBBR treatment effectiveness of domestic sewage research and structural analysis of biofilm flora,” Environ. Chem. 37 (12), 71–78 (2018). https://doi.org/10.7524/j.issn.0254-6108.2018010501

    Article  Google Scholar 

  9. C. Y. Li, X. L. Li, H. F. Sun, D. Q. Li, F. Zhang, C. Y. Lin, J. Zhang, and C. B. Ma, “Drought processes of alpine wetland and their influences on CO2 exchange,” Acta Agrestia Sin. 28 (3), 750–758 (2020). https://doi.org/10.11733/j.issn.1007-0435.2020.03.020

    Article  Google Scholar 

  10. F. Li, Z. H. Liu, T. H. Jia, S. S. Li, Y. F. Bai, C. C. Guo, W. W. Wang, M. Kong, T. Zhang, I. Awais, H. K. Zhou, Y. Jia, and Z. H. Shang, “Functional diversity of soil microbial community carbon metabolism with the degradation and restoration of alpine wetlands and meadows,” Acta Ecol. Sin. 38 (17), 6006–6015 (2018). https://doi.org/10.5846/stxb201706161096

    Article  Google Scholar 

  11. H. L. Li, D. H. Xu, and G. Z. Du, “Effect of change of plant community composition along degradation gradients on water conditions in an alpine swamp wetland on the Qinghai–Tibetan Plateau of China,” Chin. J. Plant Ecol. 36 (5), 403–410 (2012). https://doi.org/10.3724/SP.J.1258.2012.00403

    Article  Google Scholar 

  12. X. Y. Li, B. Q. Zhao, X. H. Li, Y. T. Li, R. L. Sun, L. S. Zhu, J. Xu, L. X. Wang, X. P. Li, and F. D. Zhang, “Effects of different fertilization systems on soil microbe and its relation to soil fertility,” Sci. Agric. Sin. 38 (8), 1591–1599 (2005). https://doi.org/10.3321/j.issn:0578-1752.2005.08.014

    Article  Google Scholar 

  13. C. Y. Lin, X. L. Li, H. M. Li, H. S. Sun, H. B. Han, Q. H. Wang, L. Q. Jin, and H. F. Sun, “Distribution and storage of soil organic carbon and nitrogen in alpine wetland under different degradation succession,” Acta Agrestia Sin. 27 (4), 805–816 (2019). https://doi.org/10.11733/j.issn.1007-0435.2019.04.003

    Article  Google Scholar 

  14. Y. Liusui, X. Zhu, D. Li, C. Yan, and X. Zhao, “Soil aggregate and intra-aggregate carbon fractions associated with vegetation succession in an alpine wetland of northwest China,” Catena 181, 104107 (2019). https://doi.org/10.1016/j.catena.2019.104107

    Article  Google Scholar 

  15. M. Lu, Effects of Wetlands Degradation on Structure and Biodiversity of Soil Microbial Community in Napahai Plateau Wetlands (Beijing Forestry University, Beijing, 2018).

    Google Scholar 

  16. L. Ma, W. H. Zhao, Z. B. Guo, D. Z. Wang, and B. X. Zhao, “Effects of long-term application of phosphorus fertilizer on fungal community diversity, composition, and intraspecific interactions and variation with application rate in a lime concretion black soil,” Acta Ecol. Sin. 39 (11), 4158–4167 (2019). https://doi.org/10.5846/stxb201807041462

    Article  Google Scholar 

  17. W. W. Ma, G. Li, J. Song, L. J. Yan, and L. Y. Wu, “Effect of vegetation degradation on soil organic carbon pool and carbon pool management index in the Gahai Wetland, China,” Acta Agrestia Sin. 27 (3), 687–694 (2019). https://doi.org/10.11733/j.issn.1007-0435.2019.03.022

    Article  Google Scholar 

  18. Z. G. Nie, J. Q. Wu, W. W. Ma, G. Li, and L. J. Yan, “Stoichiometric characteristics and dynamics of plant carbon, nitrogen and phosphorus in differently degraded Gannan Hai wetland,” Acta Agrestia Sin. 26 (2), 386–392 (2018). https://doi.org/10.11733/j.issn.1007-0435.2018.02.016

    Article  Google Scholar 

  19. C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner, “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools,” Nucleic Acids Res. 41 (1), 590–596 (2012). https://doi.org/10.1093/nar/gks1219

    Article  Google Scholar 

  20. M. N. Rivas, O. T. Burton, P. Wise, Y. Q. Zhang, S. A. Hobson, M. G. Lloret, C. Chehoud, J. Kuczynski, T. DeSantis, J. Warrington, E. R. Hyde, J. F. Petrosino, G. K. Gerber, L. Bry, H. C. Oettgen, et al., “A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis,” J Allergy Clin. Immunol. 131 (1), 201–212 (2013). https://doi.org/10.1016/j.jaci.2012.10.026

    Article  Google Scholar 

  21. C. E. Robert, “Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 (19), 2460 (2010). https://doi.org/10.1093/bioinformatics/btq461

    Article  Google Scholar 

  22. L. F. W. Roesch, R. R. Fulthorpe, A. Riva, G. Casella, A. K. M Hadwin, A. D. Kent, S. H. Daroub, F. A. O. Camargo, W. G. Farmerie, and E. W. Triplett, “Pyrosequencing enumerates and contrasts soil microbial diversity,” ISME J. 53, 327–327 (2007). https://doi.org/10.1038/ismej.2007.53

    Article  Google Scholar 

  23. L. R. Shang, L. Q. Wan, and X. L. Li, “Effects of organic fertilizer on soil bacterial community diversity in Leymus chinensis steppe,” Sci. Agric. Sin. 53 (13), 2614–2624 (2020). https://doi.org/10.3864/j.issn.0578-1752.2020.13.010

    Article  Google Scholar 

  24. S. G. Shanmugam, Z. V. Magbanua, M. A. Williams, K. Jangid, and W. L. Kingery, “Erratum to: bacterial diversity patterns differ in soils developing in sub-tropical and cool-temperate ecosystems,” Microb. Ecol. 73 (3), 556–569 (2017). https://doi.org/10.1007/s00248-016-0884-8

    Article  Google Scholar 

  25. Q. H. Song, F. M. Li, J. Wang, H. S. Liu, and S. Q. Li, “Effect of various mulching durations with plastic film on soil microbial quantity and plant nutrients of spring wheat field in semi-arid Loess Plateau of China,” Acta Ecol. Sin. 22 (12), 2125–2132 (2002). https://doi.org/10.3321/j.issn:1000-0933.2002.12.016

    Article  Google Scholar 

  26. A. M. Spain, L. R. Krumholz, and M. S. Elshahed, “Abundance, composition, diversity and novelty of soil Proteobacteria,” ISME J. 3 (8), 992–1000 (2009). https://doi.org/10.1038/ismej.2009.43

    Article  Google Scholar 

  27. J. Tang, Q. R. Xu, L. M. Wang, X. Ding, B. Tang, L. S. Wu, S. Feng, Q. Sun, Z. R. Yang, and J. Zhang, “Soil bacterial community diversity under different stages of degradation in zoige wetland,” Microbiol. China 38 (5), 677–686 (2011).

    Google Scholar 

  28. M. P. Thakur, A. Milcu, P. Manning, P. A. Niklaus, C. Roscher, S. Power, P. B. Reich, S. Scheu, D. Tilman, F. Ai, H.Y. Guo, R. Ji, S. Pierce, N. G. Ramirez, A. N. Richter, K. Steinauer, et al., “Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors,” Global Change Biol. 21 (11), 4076–4085 (2015). https://doi.org/10.1111/gcb.13011

    Article  Google Scholar 

  29. M. N. Thormann, “Diversity and function of fungi in peatlands: a carbon cycling perspective,” Can. J. Soil Sci. 86, 281–293 (2006). https://doi.org/10.4141/S05-082

    Article  Google Scholar 

  30. H. S. Wang, Z. M. Diao, K. L. Chen, W. Y. Wang, Y. Z. Zhang, J. M. Wang, and Y. H. Mao, “Quantity of soil microbe and affecting factors of Xiaopohu Wetlands in Qinghai Lake Basin,” J. China Agric. Univ. 20 (6), 189–197 (2015). https://doi.org/10.11841/j.issn.1007-4333.2015.06.25

    Article  Google Scholar 

  31. X. J. Wang, Z. C. Zhang, Z. Q. Yu, G. F. Shen, H. F. Cheng, and S. Tao, “Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan plateau,” Sci. Total Environ. 747, 141358 (2020). https://doi.org/10.1016/j.scitotenv.2020.141358

    Article  Google Scholar 

  32. J. Q. Wu, W. W. Ma, G. Li, A. R. M. Alhassan, H. Y. Wang, and G. P. Chen, “Vegetation degradation along water gradient leads to soil active organic carbon loss in Gahai wetland,” Ecol. Eng. 145, 105666 (2020). https://doi.org/10.1016/j.ecoleng.2019.105666

    Article  Google Scholar 

  33. Y. Wu, Q. Liu, Y. K. Qiao, K. W. Pan, C. M. Zhao, and Q. H. Chen, “Species diversity changes in subalpine coniferous forests of different restoration stages and their effects on soil properties,” Chin. J. Plant Ecol. 25 (6), 648–655 (2001). https://doi.org/10.1088/0256-307X/18/11/313

    Article  Google Scholar 

  34. S. P. Yu, C. Q. Shi, B. Z. Hu, J. N. Ding, B. Meng, and C. X. Yang, “Analysis of microbial community structure and diversity of saline soil in Gudahu Wetland,” Acta Ecol. Sin. 40 (11), 3764–3775 (2020). https://doi.org/10.5846/stxb201902140261

    Article  Google Scholar 

  35. L. H. Zeglin, C. N. Dahm, J. E. Barrett, M. N. Gooseff, S. K. Fitpatrick, and C. D. Takacs-Vesbach, “Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams,” Microb. Ecol. 61 (3), 543–556 (2011). https://doi.org/10.1007/s00248-010-9782-7

    Article  Google Scholar 

  36. W. Zhang, H. L. Wei, H. W. Gao, and Y. G. Hu, “Advances of studies on soil microbial diversity and environmental impact factors,” Chin. J. Ecol. 24 (1), 48–52 (2005). https://doi.org/CNKI:SUN:STXZ.0.2005-01-009

    Google Scholar 

  37. Q. Z. Zhao, Y. F. Wang, X. Y. Cui, Y. B. Hao, and Z. S. Yu, “Research progress of the influence factors of soil microbial diversity in grassland,” Ecol. Sci. 37 (3), 204–212 (2018). https://doi.org/10.14108/j.cnki.1008-8873.2018.03.027

    Article  Google Scholar 

  38. X. G. Zhao, S. T. Zhang, and K. C. Niu, “Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows,” Chin. J. Appl. Environ. Biol. 26 (1), 1–9 (2020). https://doi.org/10.19675/j.cnki.1006-687x.2019.03047

    Article  Google Scholar 

  39. H. Zheng, C. Dietrich, R. Radek, and A. Brune, “Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)—an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase,” Environ. Microbiol. 18 (1), 191 (2016). https://doi.org/10.1111/1462-2920.12960

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere appreciation to the reviewers and editors for their time and effort.

Funding

This study was supported by the Qinghai Science and Technology Department (Grant no. 2020-ZJ-904), National Natural Sciences Foundation of China (Grant no. 31872999) and the 111 Project (Grant No. D18013). Additional funding was received from the Joint Research Project of Three-River- Resource National Park funded by Chinese Academy of Sciences and Qinghai Provincial People’s Government (Grant no. LHZX-2020-08) and Changjiang Scholars and Innovative Research Team in University, MOE (Grant no. IRT_17R62).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Li.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C.Y., Li, X.L., Su, X.X. et al. Effects of Alpine Wetland Degradation on Soil Microbial Structure and Diversity on the Qinghai Tibet Plateau. Eurasian Soil Sc. 54 (Suppl 1), S33–S41 (2021). https://doi.org/10.1134/S1064229322030097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322030097

Keywords:

Navigation