Skip to main content
Log in

Rhizobacterial Inoculation to Quantify Structural Stability and Carbon Distribution in Aggregates of Sandy Clay Loam Soil

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Feeding of the escalating population has subjected today’s agriculture to massive farming that has shattered soil structure, organic carbon and fertility. The vulnerability of applied organics to high temperature make them inappropriate under such circumstances. The help of indigenous exopolysaccharides (EPS) secreting microflora (Pre-isolated (M2, M3, M11, M16, M19 and M22)) was taken in an incubation experiment for the restoration of soil structure and organic carbon. M22 yielded 44.5% aggregation, 8.57 and 6 g kg–1 total and macroaggregate carbon, 220 and 311.2 mg kg–1 dissolved and microbial biomass carbon and 13.143 mg k–1 CO2 evolved in soils having moisture at 100% available water contents (AWC). At the end of the experiment M2, M19 and M22 yielded 43.87, 42.58 and 42.82% (0.25 to >1 mm) water-stable aggregates (WSA) that also carried 5.31, 5.75 and 5.41 g kg–1 carbon, respectively. Microbial activity as CO2 evolved (13.13, 13.73 and 14.11), solution (217.37, 225. 98 and 218.61), biomass carbon (300.93, 287.6 and 303.51) mg kg–1 and total organic carbon (TOC) (8.52, 8.67 and 8.73) g kg–1 were found highest in M2, M19 and M22 treated soils, respectively. Saccharide glues excreted from microbiota, flocculate soil particles to formulate aggregates, entrapping carbon for structural stabilization and organics restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Ghani, M. Dexter and K. W. Perrott, “Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation,” Soil Biol. Biochem. 35 (9), 1231–1243 (2003). https://doi.org/10.1016/S0038-0717(03)00186-X

    Article  Google Scholar 

  2. A. J. Franzluebbers, R. L. Haney, C. W. Honeycutt, H. H. Schomberg and F. M. Hons, “Flush of carbon dioxide following rewetting of dried soil relates to active organic pools,” Soil Sci. Soc. Am. 64 (2), 613–623 (2000). https://doi.org/10.2136/sssaj2000.642613x

    Article  Google Scholar 

  3. A. Y. Y. Kong, K. M. Scow, A. L. Córdova-Kreylos, W. E. Holmes and J. Six, “Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems,” Soil Biol. Biochem. 43 (1), 20–30 (2011). https://doi.org/10.1016/j.soilbio.2010.09.005

    Article  Google Scholar 

  4. C. C. Cleveland, D. R. Nemergut, S. K. Schmidt, and A. R. Townsend, “Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition,” Biogeochemistry 82 (3), 229–240 (2007). https://doi.org/10.1007/s10533-006-9065-z

    Article  Google Scholar 

  5. D. Cosentino, C. Chenu, and Y. L. Bissonnais, “Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil,” Soil Biol. Biochem. 38 (8), 2053–2062 (2006). https://doi.org/10.1016/j.soilbio.2005.12.022

    Article  Google Scholar 

  6. D. S. Jenkinson and D. S. Powlson, “The effects of biocidal treatments on metabolism in soil—I. Fumigation with chloroform,” Soil Biol. Biochem. 8 (3), 209–213 (1976). https://doi.org/10.1016/0038-0717(76)90001-8

    Article  Google Scholar 

  7. E. Armada, G. Portela, A. Roldán, and R. Azcón, “Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions,” Geoderma 232, 640–648 (2014). https://doi.org/10.1016/j.geoderma.2014.06.025

    Article  Google Scholar 

  8. E. Schlichting, H. P. Blume, and K. Stahr, Bodenkundliches Praktikum, Ed. by P. Parey (Hamburg, 1995).

    Google Scholar 

  9. H. Bossuyt, K. Denef, J. Six, S. D. Frey, R. Merckx, and K. Paustian, “Influence of microbial populations and residue quality on aggregate stability,” App. Soil Ecol. 16 (3), 195–208 (2001). https://doi.org/10.1016/S0929-1393(00)00116-5

    Article  Google Scholar 

  10. H. Shahzad, M. Iqbal, and Q. U. Khan, “Rheo-chemical characterization of exopolysaccharides produced by plant growth promoting rhizobacteria,” Turk. J. Biochem. 43 (6), 686–692 (2018). https://doi.org/10.1515/tjb-2017-0204

    Article  Google Scholar 

  11. H. C. Flemming and J. Wingender, “The biofilm matrix,” Nat. Rev. 8 (9), 623–633 (2010). https://doi.org/10.1038/nrmicro2415

    Article  Google Scholar 

  12. H. M. Alvarez, R. A. Silva, A. C. Cesari, A. L. Zamit, S. R. Peressutti, R. Reichelt, U. Keller, U. Malkus, C. Rasch, and T. Maskow, “Physiological and morphological responses of the soil bacterium Rhodococcus opacusstrain PD630 to water stress,” FEMS Microbiol. Ecol. 50 (2), 75–86 (2004). https://doi.org/10.1016/j.femsec.2004.06.002

    Article  Google Scholar 

  13. J. Six and K. Paustian, “Citation classic XII: Aggregate-associated soil organic matter as an ecosystem property and measurement tool,” Soil Biol. Biochem. 68, A4–A9 (2014). https://doi.org/10.1016/j.soilbio.2013.06.014

    Article  Google Scholar 

  14. J. Six, E. T. Elliott, and K. Paustian, “Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture,” Soil Biol. Biochem. 32 (14), 2099–2103 (2000). https://doi.org/10.1016/S0038-0717(00)00179-6

    Article  Google Scholar 

  15. J. Six, E. T. Elliott, K. Paustian, and J. W. Doran, “Aggregation and soil organic matter accumulation in cultivated and native grassland soils,” Soil Sci. Soc. Am. J. 62 (5), 1367–1377 (1998). https://doi.org/10.2136/sssaj1998.03615995006200050032x

    Article  Google Scholar 

  16. J. Six, H. Bossuyt, S. Degryze, and K. Denef, “A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics,” Soil Tillage Res. 79 (1), 7–31 (2004). https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  17. J. Six, S. D. Frey, R. K. Thiet, and K. M. Batten, “Bacterial and fungal contributions to carbon sequestration in agroecosystems,” Soil Sci. Soc. Am. J. 70 (2), 555–569 (2006). https://doi.org/10.2136/sssaj2004.0347

    Article  Google Scholar 

  18. J. Williams, R. E. Prebble, W. T. Williams, and C. T. Hignett, “The influence of texture, structure and clay mineralogy on the soil moisture characteristic,” Aust. J. Soil Res. 20, 15–32 (1983).

    Article  Google Scholar 

  19. J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-Lyons, C. A. Lozupone, P. J. Turnbaugh, N. Fierer and R. Knight, “Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample,” Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011). https://doi.org/10.1073/pnas.1000080107

    Article  Google Scholar 

  20. J. H. Campbell, J. S. Clark, and J. C. Zak, “PCR-DGGE comparison of bacterial community structure in fresh and archived soils sampled along a Chihuahuan Desert elevational gradient,” Microb. Ecol. 57 (2), 261–266 (2009). https://doi.org/10.1007/s00248-008-9479-3

    Article  Google Scholar 

  21. J. H. Dane and J. W. Hopmans, “Laboratory determination of water retention,” in Methods of Soil Analysis, Part 4: Physical Methods, Ed. by J. H. Danea and G. C. Topp (Soil Science Society of America, Madison, WI, 2002), pp. 671–720.

  22. J. H. Priester, Y. Ge, V. Chang, P. K. Stoimenov, J. P. Schimel, G. D. Stucky, and P. A. Holden, “Assessing interactions of hydrophilic nanoscale TiO2 with soil water,” J. Nanopart. Res. 15, 1899 (2013). https://doi.org/10.1007/s11051-013-1899-4

    Article  Google Scholar 

  23. J. M. Tisdall, “Possible role of soil microorganisms in aggregation in soils,” Plant Soil 159 (1), 115–121 (1994). https://doi.org/10.1007/BF00000100

    Article  Google Scholar 

  24. J. P. Schimel and S. M. Schaeffer, “Microbial control over carbon cycling in soil,” Front. Microbiol. 3, 348 (2012). https://doi.org/10.3389/fmicb.2012.00348

    Article  Google Scholar 

  25. J. S. Kim, G. Sparovek, R. M. Longo, W. J. De-Melo, and D. Crowley, “Bacterial diversity of terra preta and pristine forest soil from the Western Amazon,” Soil Biol. Biochem. 39 (2), 684–690 (2007). https://doi.org/10.1016/j.soilbio.2006.08.010

    Article  Google Scholar 

  26. L. F. Roesch, R. R. Fulthorpe, A. Riva, G. Casella, A. K. Hadwin, A. D. Kent, S. H. Daroub, F. A. Camargo, W. G. Farmerie, and E. W. Triplett, “Pyrosequencing enumerates and contrasts soil microbial diversity,” ISME J. 1 (4), 283–290 (2007).

    Article  Google Scholar 

  27. L. M. Zibilski, “Carbon mineralization,” in Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties, SSSA Book Series no. 5, Ed. by J. M. Bingham and S. H. Mickelson (Soil Science Society of America, Madison, WI, 1994), pp. 853–863.

  28. M. Clarholm and U. Skyllberg, “Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils,” Soil Biol. Biochem. 63, 142–153 (2013). https://doi.org/10.1016/j.soilbio.2013.03.019

    Article  Google Scholar 

  29. M. Clarholm, U. Skyllberg, and A. Rosling, “Organic acid induced release of nutrients from metal-stabilized soil organic matter—the unbutton model,” Soil Biol. Biochem. 84, 168–176 (2015). https://doi.org/10.1016/j.soilbio.2015.02.019

    Article  Google Scholar 

  30. M. Kleber, K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P. S. Nico, “Mineral–organic associations: formation, properties, and relevance in soil environments,” Adv. Agron. 130, 1–140 (2015). https://doi.org/10.1016/bs.agron.2014.10.005

    Article  Google Scholar 

  31. M. A. Redmile-Gordon, P. C. Brookes, R. P. Evershed, K. W. T. Goulding and P. R. Hirsch, “Measuring the soil-microbial interface: extraction of extracellular polymeric substances (EPS) from soil biofilms,” Soil Biol. Biochem. 72, 163–171 (2014). https://doi.org/10.1016/j.soilbio.2014.01.025

    Article  Google Scholar 

  32. M. V. Cheshire, “Origins and stability of soil polysaccharide,” J. Soil Sci. 28 (1), 1–10 (1977). https://doi.org/10.1111/j.1365-2389.1977.tb02290.x

    Article  Google Scholar 

  33. N. Fierer and R. B. Jackson, “The diversity and biogeography of soil bacterial communities,” Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006). https://doi.org/10.1073/pnas.0507535103

    Article  Google Scholar 

  34. P. Dlamini, P. Chivenge, A. Manson, and V. Chaplot, “Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa,” Geoderma 235, 372–381 (2014). https://doi.org/10.1016/j.geoderma.2014.07.016

    Article  Google Scholar 

  35. P. Lavelle, D. Bignell, M. Lepage, V. Wolters, P. Roger, P. Ineson, O. W. Heal, and S. Dhillion, “Soil function in a changing world: the role of invertebrate ecosystem engineers,” Eur. J. Soil Biol. 33, 159–193 (1997).

    Google Scholar 

  36. P. A. Holden, “How do the microhabitats framed by soil structure impact soil bacteria and the processes they catalyze?” in The Architecture and Biology of Soils: Life in Inner Space, Ed. by K. Ritz and I. Young (CAB International, Wallingford, 2011), pp. 1–62. https://doi.org/10.1038/nrmicro2415

    Google Scholar 

  37. R. Dudal, “The sixth factor of soil formation,” Eurasian Soil Sci. 38, 12–21 (2005).

    Google Scholar 

  38. R. K. Monson, D. L. Lipson, S. P. Burns, A. A. Turnipseed, A. C. Delany, M. W. Williams, and S. K. Schmidt, “Winter forest soil respiration controlled by climate and microbial community composition,” Nature 439 (7077), 711–714 (2006). .https://doi.org/10.1038/nature04555

    Article  Google Scholar 

  39. S. Abiven, S. Menasseri, and C. Chenu, “The effects of organic inputs over time on soil aggregate stability—a literature analysis,” Soil Biol. Biochem. 41, 1–12 (2009). https://doi.org/10.1016/j.soilbio.2008.09.015

    Article  Google Scholar 

  40. S. Degryze, J. Six, C. Brits, and R. Merckx, “A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture,” Soil Biol. Biochem. 37 (1), 55–66 (2005). https://doi.org/10.1016/j.soilbio.2004.07.024

    Article  Google Scholar 

  41. S. Manzoni, J. P. Schimel, and A. Porporato, “Responses of soil microbial communities to water stress: results from meta-analysis,” Ecology 93 (4), 930–938 (2012). https://doi.org/10.1890/11-0026.1

    Article  Google Scholar 

  42. S. S. Briar, S. J. Fonte, I. Park, J. Six, K. Scow, and H. Ferris, “The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems,” Soil. Biol. Biochem. 43 (5), 905–914 (2011). https://doi.org/10.1016/j.soilbio.2010.12.017

    Article  Google Scholar 

  43. T. An, S. Schaeffer, J. Zhuang, M. Radosevich, S. Li, H. Li, J. Pei, and J. Wang, “Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the Black Soil region of Northeast China,” Biol. Fertil. Soils 51 (5), 605–613 (2015). https://doi.org/10.1007/s00374-015-1006-3

    Article  Google Scholar 

  44. X. Chen, Z. Li, M. Liu, C. Jiang, and Y. Che, “Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years,” J. Soils Sediments 15 (2), 292–301 (2015). https://doi.org/10.1007/s11368-014-0981-6

    Article  Google Scholar 

  45. X. Peng, Q. Zhu, Z. Zhang, and P.D. Hallet, “Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers,” Soil Biol. Biochem. 109, 81–94 (2017). https://doi.org/10.1016/j.soilbio.2017.02.002

    Article  Google Scholar 

  46. X. Peng, R. Horn, and P. Hallett, “Soil structure and its functions in ecosystems: phase matter and scale matter,” Soil Tillage Res. 146, 1–3 (2015). https://doi.org/10.1016/j.still.2014.10.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroon Shahzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroon Shahzad Rhizobacterial Inoculation to Quantify Structural Stability and Carbon Distribution in Aggregates of Sandy Clay Loam Soil. Eurasian Soil Sc. 53, 675–685 (2020). https://doi.org/10.1134/S1064229320050142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320050142

Keywords:

Navigation