Skip to main content
Log in

Morphophysiological Features of Some Cultivable Bacteria from Saline Soils of the Aral Sea Region

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

The study of the microbiome of saline soils is of significant scientific and practical interest in relation to the capacity of these microorganisms for adaptation to extreme conditions of the environment. The isolation, identification, and study of the cultural-morphological and biochemical properties of the associative bacteria from the rhizosphere of Salicornia L., a common plant in the Aral region of Uzbekistan, have been performed. The dominant cultivable bacteria of the saline soil in the studied area are halophilic bacteria of the genera Halomonas and Planococcus belonging to different phylogenetic groups: the Gamma-proteobacteria and Firmicutes, respectively. The morphophysiological features of isolated strains have been studied; in particular, their salt tolerance and the possibility of utilizing various carbon sources. The strains grow well at NaCl concentrations of 8.0, 10.0, and 15.0%, though the growth and accumulation of biomass in cultures are not observed at NaCl concentrations of 20.0, 25.0, and 30.0%. The obtained data on the biodiversity of halophilic microorganisms in saline soils can be used in the diagnostics of the state of saline soils and for their bioremediation and rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. E. Andronov, S. N. Petrova, A. G. Pinaev, E. V. Pershina, S. Zh. Rakhimgalieva, K. M. Akhmedenov, A. V. Gorobets, and N. Kh. Sergaliev, “Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques,” Eurasian Soil Sci. 45, 147–156 (2012).

    Article  Google Scholar 

  2. Yu. V. Boltyanskaya, V. V. Kevbrin, A. M. Lysenko, T. V. Kolganova, T. P. Tourova, G. A. Osipov, and T. N. Zhilina, “Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes,” Microbiology (Moscow) 76, 739–747 (2007).

    Article  Google Scholar 

  3. V. N. Grishko, O. V. Syshchikova, G. M. Zenova, P. A. Kozhevin, M. S. Dubrova, D. A. Lubsanova, and I. Yu. Chernov, “Mycelial actinobacteria in salt-affected soils of arid territories of Ukraine and Russia,” Eurasian Soil Sci. 48, 72–76 (2015).

    Article  Google Scholar 

  4. E. N. Detkova and Yu. V. Boltyanskaya, “Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application,” Microbiology (Moscow) 76, 511–522 (2007).

    Article  Google Scholar 

  5. L. A. Dimeeva, “Regularities of initial successions on the Aral Sea coast,” Arid. Ekosist. 13, 89–100 (2007).

    Google Scholar 

  6. V. A. Dukhovnyi, I. S. Avkyan, I. M. Zholdasova, I. Mirabdullaev, Sh. Muminov, E. Roshchenko, I. B. Ruziev, M. T. Ruziev, G. V. Stulina, A. G. Sorokin, A. D. Sorokin, Sh. Zaitov, B. A. Tasjmukhammedov, A. I. Tuchin, and O. Eshchanov, The Aral Sea and Adjacent Areas: A Review of Studies by the Center of the Interstate Coordination Water Commission of the Central Asia on Monitoring of the State and Situation Analysis (Baktria Press, Tashkent, 2017) [in Russian].

    Google Scholar 

  7. D. G. Zvyagintsev, G. M. Zenova, and G. V. Oborotov, “Mycelial bacteria of saline soils,” Eurasian Soil Sci. 41, 1107–1114 (2008).

    Article  Google Scholar 

  8. G. M. Zenova, P. A. Kozhevin, N. A. Manucharova, D. A. Lubsanova, and M. S. Dubrova, “Ecophysiological features of actinomycetes of desert soils of Mongolia,” Izv. Ross. Akad. Nauk, Ser. Biol., No. 3, 246–253 (2014).

  9. R. K. Kuziev and V. E. Sektimenko, Soils of Uzbekistan (Tashkent, 2009) [in Russian].

    Google Scholar 

  10. A. I. Netrusov, M. A. Egorova, L. M. Zakharchuk, et al., Practical Manual on Microbiology (Akademya, Moscow, 2005) [in Russian].

    Google Scholar 

  11. E. V. Pershina, G. S. Tamazyan, A. S. Dol’nik, A. G. Pinaev, N. Kh. Sergaliev, and E. E. Andronov, “The structure of the microbial community of saline soils using high-performance sequencing,” Ekol. Genet. 10 (2), 32–39 (2012).

    Google Scholar 

  12. D. S. Sattarov, V. E. Sektimenko, and V. G. Popov, “Soil cover of the Aral Sea region in relation to drying of the Aral Sea,” Pochvovedenie, No. 10, 5–10 (1991).

    Google Scholar 

  13. E. A. Selivanova, “Survival mechanisms of microorganisms in hyperosmotic conditions,” Byull. Orenb. Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, No. 3, 13 (2012).

    Google Scholar 

  14. T. A. Sokolova, “Specificity of soil properties in the rhizosphere: analysis of literature data,” Eurasian Soil Sci. 48, 968–980 (2015).

    Article  Google Scholar 

  15. E. A. Khalilova, S. Ts. Kotenko, E. A. Islammagomedova, R. Z. Gasanov, A. A. Abakarova, and D. A. Aliverdieva, “Extremophilic microbial communities of saline soils and their diversity in the region of the Caspian lowland,” Arid. Ekosist. 23, 52–56 (2017).

    Google Scholar 

  16. T. I. Chernov, A. K. Tkhakakhova, M. P. Lebedeva, A. D. Zhelezova, N. A. Bgazhba, and O. V. Kutovaya, “Microbiomes of the soils of solonetzic complex with contrasting salinization on the Volga–Ural interfluve,” Eurasian Soil Sci. 51, 1057–1066 (2018). .https://doi.org/10.1134/S1064229318090041

    Article  Google Scholar 

  17. W. Aboudrar, C. Schwartz, C. Benizri, J. L. Morel, and A. Boularbah, “Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions,” Int. J. Phytoremed. 9, 41–52 (2007).

    Article  Google Scholar 

  18. M. Argandoña, R. Fernández-Carazo, I. Llamas, F. Martínez-Checa, J. M. Caba, E. Quesada, and A. del Moral, “The moderately halophilic bacterium Halomonas maura is a free-living diazotroph,” FEMS Microbiol. Lett. 244 (1), 69–74 (2005). https://doi.org/10.1016/j.femsle.2005.01.019

    Article  Google Scholar 

  19. R. M. Atlas, Handbook of Microbiological Media (CRC Press, Boca Raton, 2010).

    Google Scholar 

  20. Y. G. Chen, Y. Q. Zhang, H. Y. Huang, H. P. Klenk, Sh. K. Tang, K. Huang, Q. H. Chen, X. L. Cui, and W. J. Li, “Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin,” Int. J. Syst. Evol. Microbiol. 59, 2888–2893 (2009). https://doi.org/10.1099/ijs.0.010173-0

    Article  Google Scholar 

  21. Microbial Ecology of Extreme Environments, Ed. by C. Chénard and F. M. Lauro (Springer-Verlag, New York, 2017). .https://doi.org/10.1007/978-3-319-51686-8

    Google Scholar 

  22. R. Chowdhury, A. K. Sen, P. Karak, R. Chatterjee, A. K. Giri, and K. Chaudhuri, “Isolation and characterization of an arsenic-resistant bacterium from a bore-well in West Bengal,” India. Ann. Microbiol. 59, 253–258 (2009).

    Article  Google Scholar 

  23. M. J. Coronado, C. Vargas, E. Mellado, G. Tegos, C. Drainas, J. Nieto, and A. Ventosa, “The α-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization,” Microbiology 146 (4), 861–868 (2000).

    Article  Google Scholar 

  24. S. E. Desouky, M. S. El-Gamal, and M. G. Barghoth, “Aerobic biodegradation of BTX by halophilic Planococcus sp. strain TS1 isolated from Egypt,” J. Adv. Biol. Biotechnol. 4, 1–13 (2015).

    Article  Google Scholar 

  25. T. J. Flowers and T. D. Colmer, “Salinity tolerance in halophytes,” New Phytol. 179, 945–963 (2008).

    Article  Google Scholar 

  26. L. Gan, H. Zhang, J. Tian, X. Li, X. Long, Y. Zhang, Y. Dai, and Y. Tian, “Planococcus salinus sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil,” Int. J. Syst. Evol. Microbiol. 68, 589–595 (2018).

    Article  Google Scholar 

  27. W. L. Goodfriend, M. W. Olsen, and R. J. Frye, “Soil microfloral and microfaunal response to Salicornia bigelovii planting density and soil residue amendment,” Plant Soil 223, 23–32 (2000).

    Article  Google Scholar 

  28. X. Huang, Z. Shao, Y. Hong, L. Lin, C. Li, F. Huang, H. Wang, and Z. Liu, “Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66-4: molecular cloning, heterogonous expression, and biochemical characterization,” J. Microbiol. 48 (3), 318–324 (2010).

    Article  Google Scholar 

  29. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN FAO, Rome, 2015).

  30. B. Jha, I. Gontia, and A. Hartmann, “The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential,” J. Plant Soil 356, 265–277 (2012). https://doi.org/10.1007/s11104-011-0877-9

    Article  Google Scholar 

  31. J. Z. Kaye, M. C. Márquez, A. Ventosa, and J. A. Baross, “Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments,” Int. J. Syst. Evol. Microbiol. 54, 499–511 (2004).https://doi.org/10.1099/ijs.0.02799-0

    Article  Google Scholar 

  32. D. J. Kushner and M. Kamekura, “Physiology of halophilic eubacteria,” in Halophilic Bacteria, Ed. by F. Rodríguez-Varela (CRC Press, Boca Raton, FL, 1988), Vol. 1, pp. 87–103.

    Google Scholar 

  33. F. Mapelli, R. Marasco, E. Rolli, M. Barbato, H. Cherif, A. Guesmi, I. Ouzari, D. Daffonchio, and S. Borin, “Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils,” Biomed. Res. Int. 2013, (2013). https://doi.org/10.1155/2013/248078

  34. A. Oren, “Ecology of halophiles,” in Extremophiles Handbook (Springer-Verlag, New York, 2011), pp. 344–361.

    Google Scholar 

  35. F. Rodriguez-Valera, “Characteristics and microbial ecology of hypersaline environments,” in Halophilic Bacteria, Ed. by F. Rodríguez-Varela (CRC Press, Boca Raton, FL, 1988), Vol. 1, pp. 3–30.

    Google Scholar 

  36. J. Rozema and T. Flowers, “Crops for a salinized world,” Science 322, 478–1480 (2008).

    Article  Google Scholar 

  37. S. G. Sherimbetov, U. P. Pratov, and R. S. Mukhamedov, “Classification of plants in the South drying bottom of the Aral Sea,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 4, (2015).

  38. Y. W. Shi, K. Lou, Ch. Li, L. Wang, Z. Y. Zhao, Sh. Zhao, and Ch. Y. Tian, “Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada ralocaspica,” J. Microbiol. 53 (10), 678–685 (2015).

    Article  Google Scholar 

  39. S. Shivaji, “Planococcus,” in Bergey’s Manual of Systematics of Archaea and Bacteria (Wiley, Hoboken, NJ, 2015).

    Google Scholar 

  40. P. Shivanand, G. Mugeraya, and A. Kumar, “Utilization of renewable agricultural residues for the production of extracellular halostable cellulase from newly isolated Halomonas sp. strain PS47,” Ann. Microbiol. 63, 1257–1263 (2013).

    Article  Google Scholar 

  41. K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Mol. Biol. Evol. 10, 512–526 (1993).

    Google Scholar 

  42. K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, “MEGA6: Molecular Evolutionary Genetics Analysis version 6.0,” Mol. Biol. Evol. 30 (12), 2725–2729 (2013).

    Article  Google Scholar 

  43. Thermo Scientific GeneJET PCR Purification Kit #K0701, #K0702 (Thermo Scientific, Waltham, MA, 2013).

  44. K. N. Toderich, E. V. Shuyskaya, K. T. Faisal, N. Matsuo, Sh. Ismail, D. B. Aralova, and T. F. Radjabov, “Integrating agroforestry and pastures for soil salinity management in dryland ecosystems in Aral Sea basin,” in Developments in Soil Salinity Assessment and Reclamation: Innovative Thinking and Use of Marginal Soil and Water Resources in Irrigated Agriculture (Springer-Verlag, New York, 2013), pp. 579–602.

    Google Scholar 

  45. S. Turner, K. M. Pryer, V. P. Miao, and J. D. Palmer, “Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis,” J. Eukaryotic Microbiol. 46, 327–338 (1999).

    Article  Google Scholar 

  46. A. Ventosa, E. Quesada, F. Rodriguez-Valera, F. Ruiz-Berraquero, and A. Ramos-Cormenzana, “Numerical taxonomy of moderately halophilic gram-negative rods,” J. Gen. Microbiol. 128, 1959–1968 (1982).

    Google Scholar 

  47. R. H. Vreeland, C. D. Litchfield, E. L. Martin, and E. Elliot, “Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria,” Int. J. Syst. Bacteri 30 (2), 485–495 (1980).

    Article  Google Scholar 

  48. W. S. See-Too, J. Y. Tan, R. Ee, Y. L. Lim, P. Convey, D. A. Pearce, W. F. Yin, and K. G. Chan, “De novo assembly of complete genome sequence of Planococcus kocurii ATCC 43650(T), a potential plant growth promoting bacterium,” Mar. Genomics 28, 33–35 (2016).

    Article  Google Scholar 

  49. J. Weisser and H. G. Trüper, “Osmoregulation in a new haloalkaliphilic Bacillus from the Wadi Natrun (Egypt),” Syst. Appl. Microbiol. 6, 7–11 (1985).

    Article  Google Scholar 

  50. J. M. Willey, L. M. Sherwood, and Ch. J. Woolverton, Prescott’s Principles of Microbiology (McGraw-Hill, New York, 2009).

    Google Scholar 

  51. S. William, H. Feil, and A. Copeland, Bacterial Genomic DNA Isolation Using CTAB (US Department of Energy Joint Genome Institute, Walnut Creek, CA, 2012).

    Google Scholar 

  52. D. Wojcieszynska, D. Domaradzka, K. Hupert-Kocurek, and U. Guzik, “Enzymes involved in naproxen degradation by Planococcus sp. S5,” Pol. J. Microbiol. 65 (2), 177–182 (2016).

    Article  Google Scholar 

  53. Y. Yonezawa, H. Tokunaga, M. Ishibashi, and M. Tokunaga, “Characterization of nucleoside diphosphate kinase from moderately halophilic eubacteria,” Biosci. Biotechnol. Biochem. 65 (10), 2343–2346 (2001).

    Article  Google Scholar 

  54. J. H. Yoon, S. J. Kang, S. Y. Lee, K. H. Oh, and T. K. Oh, “Planococcus salinarum sp. nov., isolated from a marine solar saltern, and emended description of the genus Planococcus,” Int. J. Syst. Evol. Microbiol. 60, 754–758 (2010). https://doi.org/10.1099/ijs.0.013136-0

    Article  Google Scholar 

  55. Sh. Zhao, N. Zhou, Z. Y. Zhao, K. Zhang, G. H. Wu, and Ch. Y. Tian, “Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress,” Curr. Microbiol. 73, 574–581 (2016). https://doi.org/10.1007/s00284-016-1096-7

    Article  Google Scholar 

  56. N. Zhou, S. Zhao, and C. Y. Tian, “Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress,” FEMS Microbiol. Lett. 364 (11), 1–7 (2017). https://doi.org/10.1093/femsle/fnx091

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Begmatov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begmatov, S.A., Selitskaya, O.V., Vasileva, L.V. et al. Morphophysiological Features of Some Cultivable Bacteria from Saline Soils of the Aral Sea Region. Eurasian Soil Sc. 53, 90–96 (2020). https://doi.org/10.1134/S1064229320010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320010044

Keywords:

Navigation