Skip to main content
Log in

Estimating the Soil Water Content Using Electrical Conductivity, Oven Method and Speedy Moisture Tester

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil samples were taken in order to investigate the spatial soil water content changes at 40 points in a field of 675 m2 located on the old Istanbul-Izmit road in Kocaeli-Turkey. The water content values of soil samples collected were obtained using oven and Speedy Moisture Tester (SMT) in the laboratory to correlate with measured electrical conductivity of soil by electrical resistivity method with a 2-electrode system. The results showed a reasonably good correlation between electrical conductivity and water content. The determination coefficient between the water content and the electrical conductivity found by the oven method (R2 ≈ 0.8) was higher than that of the SMT (R2 ≈ 0.6). The correlation between the water content values of oven and SMT is quite affordable with the determination coefficient (R2 ≈ 0.7). Considering the results obtained from Oven and SMT method, it can be concluded that the resistivity method is also successful in measuring soil water content. It is foreseen that resistivity method can be preferred both because it is easy to use, and large areas are faster and economical in measuring soil water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Bozkurt, C. Kurtulus, and H. Endes, “Measurements of apparent electrical conductivity and water content using a resistivity meter,” Int. J. Phys. Sci. 4 (12), 784–795 (2009).

    Google Scholar 

  2. A. Pozdnyakov, L. Pozdnyakova, and L. Karpachevskii, “Relationship between water tension and electrical resistivity in soils,” Eurasian Soil Sci. 39, S78–S83 (2006). https://doi.org/10.1134/S1064229306130138

    Article  Google Scholar 

  3. A. A. Bery and N. E. H. Ismail, “Empirical correlation between electrical resistivity and engineering properties of soils,” Soil Mech. Found. Eng. 54 (6), 425–429 (2018). https://doi.org/10.1007/s11204-018-9491-7

    Article  Google Scholar 

  4. B. R. Spies and R. G. Ellis, “Cross-borehole resistivity tomography of a pilot-scale, in-situ verification test,” Geophysics 60 (3), 886–898 (1995). https://doi.org/10.1190/1.1443824

    Article  Google Scholar 

  5. D. Michot, Y. Benderitter, A. Dorigny, B. Nicoullaud, D. King, and A. Tabbagh, “Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography,” Water Resour. Res. 39 (5), (2003). https://doi.org/10.1029/2002WR001581

  6. D. A. Robinson, S. C. Campbell, J. W. Hopmans, B. K. Hornbuckle, S. B. Jones, R. Knight, F. Odgen, J. Selker, and O. Wendroth, “Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review,” Vadose Zone J. 7, 359–389 (2008). https://doi.org/10.2136/vzj2007.0143

    Article  Google Scholar 

  7. F. Garrido, M. Ghodrati, and M. Chendorain, “Small-scale measurement of soil water content using a fiber optic sensor,” Soil Sci. Soc. Am. J. 63 (6), 1505–1512 (1999). https://doi.org/10.2136/sssaj1999.6361505x

    Article  Google Scholar 

  8. F. Ozcep, E. Yıldırım, O. Tezel, M. Asci, and S. Karabulut, “Correlation between electrical resistivity and soil-water content based artificial intelligent techniques,” Int. J. Phys. Sci. 5 (1), 47–56 (2010).

    Google Scholar 

  9. F. Ozcep, O. Tezel, and M. Asci, “Correlation between electrical resistivity and soil-water content: Istanbul and Golcuk,” Int. J. Phys. Sci. 4 (6), 362–365 (2009).

    Google Scholar 

  10. F. I. Siddiqui and S. Osman, “Integrating geo-electrical and geotechnical data for soil characterization,” Int. J. Appl. Phys. Math. 2 (2), 104 (2012). https://doi.org/10.7763/IJAPM.2012.V2.63

    Article  Google Scholar 

  11. G. Calamita, L. Brocca, A. Perrone, and T. Moramarco, “Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites,” J. Hydrol. 454, 101–112 (2012). https://doi.org/10.1016/j.jhydrol.2012.06.001

    Article  Google Scholar 

  12. G. A. Leonard, Foundation Engineering (McGraw-Hill, London, 1962).

    Google Scholar 

  13. G. C. Topp, J. L. Davis, and A. P. Annan, “Electromagnetic determination of soil water content: measurements in coaxial transmission lines,” Water Resour. Res. 16 (3), 574–582 (1980). https://doi.org/10.1029/WR016i003p00574

    Article  Google Scholar 

  14. H. Shima, “2-D and 3-D resistivity imaging reconstruction using crosshole data,” Geophysics 55 (10), 682–694 (1992). https://doi.org/10.1190/1.1443195

    Article  Google Scholar 

  15. I. Ketin and Ö. Gümüş, Unpublished Technical Report No. 288, 118 (1963).

  16. I. Rodríguez-Iturbe and A. Porporato, Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  17. J. M. Blonquist, S. B. Jones, and D. A. Robinson, “Standardizing characterization of electromagnetic water content sensors,” Vadose Zone J. 4, 1059–1069 (2005). https://doi.org/10.2136/vzj2004.0141

    Article  Google Scholar 

  18. K. M. Larson, E. E. Small, E. D. Gutmann, A. L. Bilich, J. J. Braun, and V. U. Zavorotny, “Use of GPS receivers as a soil moisture network for water cycle studies,” Geophys. Res. Lett. 35 (24), (2008). https://doi.org/10.1029/2008GL036013

  19. Kocaeli Province Environmental Status Report 2012 (Kocaeli Province Directorate of Environment and Urbanization, Kocaeli, 2012).

  20. M. Zreda, D. Desilets, and T. P. Ferré, “Cosmic-ray neutron probe: non-invasive measurement of soil water content,” in Transactions of American Geophysical Union Fall Meeting 2005 (San Francisco, 2005), Abst. ID U21B-0810.

  21. R. B. Grayson and A. W. Western, “Towards aerial estimation of soil water content from point measurements: time and space stability of mean response,” J. Hydrol. 207, 68–82 (1998). https://doi.org/10.1016/S0022-1694(98)00096-1

    Article  Google Scholar 

  22. S. B. Jones, M. Wraith, and O. Dani, “Time domain reflectometry measurement principles and applications,” Hydrol. Process. 16 (1), 141–153 (2002). https://doi.org/10.1002/hyp.513

    Article  Google Scholar 

  23. S. R. Evett, “Soil water measurement by neutron thermalization,” in Encyclopedia of Water Science (Marcel Dekker, New York, 2003), pp. 889–893. https://doi.org/10.1081/E-EWS120010153

    Google Scholar 

  24. S. R. Evett, L. K. Heng, P. Moutonnet, and M. L. Nguyen, Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation and Sensor Technology (International Atomic Energy Agency, Vienna, 2008). https://doi.org/10.2136/vzj2008.0171

    Google Scholar 

  25. W. Daily and E. Owen, “Cross-borehole resistivity tomography,” Geophysics 56 (8), 1228–1235 (1991). https://doi.org/10.1190/1.1443142

    Article  Google Scholar 

  26. W. Nijland, M. Van der Meijde, E.A. Addink, and S.M. de Jong, “Detection of soil moisture and vegetation water abstraction in a Mediterranean natural area using electrical resistivity tomography,” Catena 81 (3), 209–216 (2010). https://doi.org/10.1016/j.catena.2010.03.005

    Article  Google Scholar 

  27. Y. Li and D.W. Oldenburg, “Approximate inverse mappings in DC resistivity problems,” Geophys. J. Int. 109 (2), 343–362 (1992). https://doi.org/10.1111/j.1365-246X.1992.tb00101.x

    Article  Google Scholar 

  28. Y. Son, M. Oh, and S. Lee, “Estimation of soil weathering degree using electrical resistivity,” Environ. Earth Sci. 59 (6), 1319–1326 (2010). https://doi.org/10.1007/s12665-009-0119-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Durdağ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtuluş, C., Yeken, T. & Durdağ, D. Estimating the Soil Water Content Using Electrical Conductivity, Oven Method and Speedy Moisture Tester. Eurasian Soil Sc. 52, 1577–1582 (2019). https://doi.org/10.1134/S1064229319120081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319120081

Keywords:

Navigation