Skip to main content
Log in

Nitrogen Isotopes in Soils and Plants of Tundra Ecosystems in the Khibiny Mountains

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The isotopic composition of nitrogen in soils and plants may be an indicator of transformation of its compounds and sources of N nutrition of plants. Natural 15N abundance (δ15N) was determined in soils (the total, ammonium, and nitrate nitrogen) and in plant leaves and roots of four tundra ecosystems in the Khibiny Mountains. The studied soils (Folic Leptic Entic Podzol and Leptosols) significantly differ in N availability, and plants are represented by the species, forming ectomycorrhiza, ericoid mycorrhiza, and arbuscular mycorrhiza, as well as by the species, which usually do not form a mycorrhiza. The range of δ15N in soil inorganic compounds is from –16.2 ‰ in nitrates to +6.4‰ in ammonium, which reflects the correlation between the activities of N-mineralization and nitrification and δ15N-\({\text{NH}}_{4}^{ + }\), as well as a potentially strong effect on the isotopic composition of nitrogen in plants. The value of δ15N in plant leaves and roots changes in a narrower range (from –7.3 to +2.4‰), which may be related to N uptake from different sources and to fractionation of N isotopes during N assimilation. Roots are 15N-enriched in comparison with leaves in most of the studied plant species, which corresponds to the concept of mycorrhiza participation in N nutrition of plants. Regardless of the type of mycorrhizal symbiosis, the difference in δ15N between roots and leaves of most plant species decreases contrary to N availability in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. S. Buzin, M. I. Makarov, T. I. Malysheva, M. S. Kadulin, N. E. Koroleva, and M. N. Maslov, “Transformation of nitrogen compounds in soils of mountain tundra ecosystems in the Khibiny,” Eurasian Soil Sci. 52, 518–525 (2019). https://doi.org/10.1134/S1064229319030025

    Article  Google Scholar 

  2. D. V. Veselkin, “Relationships between the volumes of fungi and wood tissues in ectomycorrhizal roots of conifers,” Lesovedenie, No. 2, 140–146 (2015).

    Google Scholar 

  3. M. I. Makarov, “The nitrogen isotopic composition in soils and plants: its use in environmental studies (a review),” Eurasian Soil Sci. 42, 1335–1347 (2009).

    Article  Google Scholar 

  4. M. I. Makarov, “The role of mycorrhiza in transformation of nitrogen compounds in soil and nitrogen nutrition of plants: a review,” Eurasian Soil Sci. 52, 193–205 (2019). https://doi.org/10.1134/S1064229319020108

    Article  Google Scholar 

  5. M. I. Makarov, T. I. Malysheva, and O. V. Menyailo, “Isotopic composition of nitrogen and transformation of nitrogen compounds in meadow-alpine soils,” Eurasian Soil Sci. 52, 1028-1037 (2019). https://doi.org/10.1134/S1064229319090059

    Article  Google Scholar 

  6. M. I. Makarov, O. S. Mulyukova, T. I. Malysheva, and O. V. Menyailo, “Influence of drying of the samples on the transformation of nitrogen and carbon compounds in mountain-meadow alpine soils,” Eurasian Soil Sci. 46, 778–787 (2013). https://doi.org/10.1134/S1064229313070053

    Article  Google Scholar 

  7. S. E. Smith and D. J. Read, Mycorrhizal Symbiosis (Elsevier, Amsterdam, 2008; KMK, Moscow, 2012).

  8. F. S. Chapin, P. M. Vitousek, and K. Vancleve, “The nature of nutrient limitation in plant-communities,” Am. Nat. 127, 48–58 (1986).

    Article  Google Scholar 

  9. J. M. Craine, E. N. J. Brookshire, M. D. Cramer, N. J. Hasselquist, K. Koba, E. Marin-Spiotta, and L. Wang, “Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils,” Plant Soil 396, 1–26 (2015).

    Article  Google Scholar 

  10. J. M. Craine, A. J. Elmore, M. P. M. Aidar, M. Bustamante, T. E. Dawson, E. A. Hobbie, A. Kahmen, M. C. Mack, K. K. McLauchlan, A. Michelsen, G. B. Nardoto, L. H. Pardo, J. Peñuelas, P. B. Reich, E. A. G. Schuur, et al., “Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability,” New Phytol. 183, 980–992 (2009).

    Article  Google Scholar 

  11. J. M. Craine, A. J. Elmore, L. Wang, J. Aranibar, M. Bauters, P. Boeckx, B. E. Crowley, M. A. Dawes, S. Delzon, A. Fajardo, Y. Fang, L. Fujiyoshi, A. Gray, R. Guerrieri, M. J. Gundale, et al., “Isotopic evidence for oligotrophication of terrestrial ecosystems,” Nat. Ecol. Evol. 2, 1735–1744 (2018).

    Article  Google Scholar 

  12. J. M. Craine, W. G. Lee, W. J. Bond, R. J. Williams, and L. C. Johnson, “Environmental constraints on a global relationship among leaf and root traits of grasses,” Ecology 86, 12–19 (2005).

    Article  Google Scholar 

  13. P. Dijkstra, C. Williamson, O. Menyailo, R. Doucett, G. Koch, and B. A. Hungate, “Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow,” Isotopes Environ. Health Stud. 39, 29–39 (2003).

    Article  Google Scholar 

  14. K. S. Emmerton, T. V. Callaghan, H. E. Jones, J. R. Leake, A. Michelsen, and D. J. Read, “Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi,” New Phytol. 151, 503–511 (2001).

    Article  Google Scholar 

  15. R. D. Evans, A. J. Bloom, S. S. Sukrapanna, and J. R. Ehleringer, “Nitrogen isotope composition of tomato (Lucopersicon esculentum Mill. Cv. T-5) grown under ammonium or nitrate nutrition,” Plant Cell Environ. 19, 1317–1323 (1996).

    Article  Google Scholar 

  16. R. E. Farrell, P. J. Sandercock, and C. van Kessel, “Landscape-scale variations in leached nitrate: relationship to denitrification and natural nitrogen-15 abundance,” Soil Sci. Soc. Am. J. 60, 1410–1415 (1996).

    Article  Google Scholar 

  17. H. M. Fonseca, R. L. Berbara, and M. J. Daft, “Shoot δ15N and δ13C values of non-host Brassica rapa change when exposed to Glomus etunicatum inoculum and three levels of phosphorus and nitrogen,” Mycorrhiza 11, 151–158 (2001).

    Article  Google Scholar 

  18. C. T. Garten, Jr., “Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed,” Ecology 74, 2098–2113 (1993).

    Article  Google Scholar 

  19. L. Handley, R. Azcon, J. R. Lozano, and C. Scrimgeour, “Plant δ15N associated with arbuscular mycorrhization, drought and nitrogen deficiency,” Rapid Commun. Mass Spectrom. 13, 1320–1324 (1999).

    Article  Google Scholar 

  20. M. G. Heijden, F. M. Martin, M. A. Selosse, and I. R. Sanders, “Mycorrhizal ecology and evolution: the past, the present, and the future,” New Phytol. 205, 1406–1423 (2015).

    Article  Google Scholar 

  21. C. M. Hepper, “A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots,” Soil Biol. Biochem. 9, 15–18 (1977).

    Article  Google Scholar 

  22. E. A. Hobbie, A. Jumpponen, and J. Trappe, “Foliar and fungal 15N:14N ratios reflect development of mycorrhiza and nitrogen supply during primary succession: testing analytical models,” Oecologia 146, 258–268 (2005).

    Article  Google Scholar 

  23. E. A. Hobbie, S. A. Macko, and M. Williams, “Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions,” Oecologia 122, 273–283 (2000).

    Article  Google Scholar 

  24. R. M. Holmes, J. M. McClelland, D. M. Sigman, B. Fry, and B. J. Petersen, “Measuring 15N–NH4 + in marine, estuarine and fresh waters: An adaptation of the ammonia diffusion method for samples with low ammonium concentrations,” Mar. Chem. 60, 235–243 (1998).

    Article  Google Scholar 

  25. P. Högberg, “15N natural abundance in soil-plant systems,” New Phytol. 137, 179–203 (1997).

    Article  Google Scholar 

  26. J. Leigh, A. Hodge, and A. H. Fitter, “Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material,” New Phytol. 181, 199–207 (2009).

    Article  Google Scholar 

  27. R. W. Lucas and B. B. Casper, “Ectomycorrhizal community and extracellular enzyme activity following simulated atmospheric N deposition,” Soil Biol. Biochem. 40, 1662–1669 (2008).

    Article  Google Scholar 

  28. M. I. Makarov, T. I. Malysheva, J. H. C. Cornelissen, R. S. P. van Logtestijn, and B. Glasser, “Consistent patterns of 15N distribution through soil profiles in diverse alpine and tundra ecosystems,” Soil Biol. Biochem. 40, 1082–1089 (2008).

    Article  Google Scholar 

  29. M. I. Makarov, V. G. Onipchenko, T. I. Malysheva, R. S. P. van Logtestijn, N. A. Soudzilovskaia, and J. H. C. Cornelissen, “Determinants of 15N natural abundance in leaves of co-occurring plant species and types within an alpine lichen heath in the Northern Caucasus,” Arct., Antarct., Alp. Res. 46, 581–590 (2014).

    Article  Google Scholar 

  30. A. Michelsen, I. K. Schmidt, S. Jonasson, C. Quarmby, and D. Sleep, “Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen,” Oecologia 105, 53–63 (1996).

    Article  Google Scholar 

  31. A. E. Miller and W. D. Bowman, “Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: Do species partition by nitrogen form?” Oecologia 130, 609–616 (2002).

    Article  Google Scholar 

  32. K. Nadelhoffer, G. Shaver, B. Fry, A. Giblin, L. Johnson, and R. McKane, “15N natural abundances and N use by tundra plants,” Oecologia 107, 386–394 (1996).

    Article  Google Scholar 

  33. L. H. Pardo, P. H. Templer, C. L. Goodale, S. Duke, P. M. Groffman, M. B. Adams, P. Boeckx, J. Boggs, J. Campbell, B. Colman, J. Compton, B. Emmett, P. Gundersen, J. Kjonaas, G. Lovett, et al., “Regional assessment of N saturation using foliar and root delta N-15,” Biogeochemistry 80, 143–171 (2006).

    Article  Google Scholar 

  34. K. Pörtl, S. Zechmeister-Boltenstern, W. Wanek, P. Ambus, and T. W. Berger, “Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils,” Plant Soil 295, 79–94 (2007).

    Article  Google Scholar 

  35. T. K. Raab, D. A. Lipson, and R. K. Monson, “Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle,” Oecologia 108, 488–494 (1996).

    Article  Google Scholar 

  36. T. K. Raab, D. A. Lipson, and R. K. Monson, “Soil amino acid utilization among species of the Cyperaceae: plant and soil processes,” Ecology 80, 2408–2419 (1999).

    Article  Google Scholar 

  37. Robinson D. “δ15N as an integrator of the nitrogen cycle,” Trends Ecol. Evol. 16, 153–162 (2001).

    Article  Google Scholar 

  38. D. Robinson, L. L. Handley, and C. M. Scrimgeour, “A theory for 15N/14N fractionation in nitrate-grown vascular plants,” Planta 205, 397–406 (1998).

    Article  Google Scholar 

  39. E.-D. Schulze, F. S. Chapin III, and G. Gebauer, “Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska,” Oecologia 100, 406–412 (1994).

    Article  Google Scholar 

  40. D. M. Sigman, M. A. Altabet, R. Michener, D. C. McCorkle, B. Fry, and R. M. Holmes, “Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method,” Mar. Chem. 57, 227–242 (1997).

    Article  Google Scholar 

  41. T. Yoneyama and A. Kaneko, “Variations in the natural abundance of 15N in nitrogenous fractions in komatsuna plants supplied with nitrate,” Plant Cell Physiol. 30, 957–962 (1989).

    Google Scholar 

  42. T. Yoneyama, T. Omata, S. Nakata, and J. Yazaki, “Fractionation of nitrogen isotopes during the uptake and assimilation of ammonia by plants,” Plant Cell Physiol. 32, 1211–1217 (1991).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 16-04-00544.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Makarov.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, M.I., Buzin, I.S., Tiunov, A.V. et al. Nitrogen Isotopes in Soils and Plants of Tundra Ecosystems in the Khibiny Mountains. Eurasian Soil Sc. 52, 1195–1206 (2019). https://doi.org/10.1134/S1064229319100077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319100077

Keywords:

Navigation