Skip to main content
Log in

Soil CO2 Emission, Microbial Biomass, and Basal Respiration of Chernozems under Different Land Uses

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

The relationships between the soil CO2 emission and microbial properties have been studied in Haplic Chernozem of steppe, forest (oak), bare fallow of the reserve area and in Urbic Technosols of Kursk city. The CO2 emission was monthly measured (May–October) from the soil surface (EMsurf) and two subsoil layers at the depths of 10 and 20 cm (EM10, EM20), and the soil temperature and water content were simultaneously recorded. Overall, 360 soil samples have been taken from the layers 0–10, 10–20, and 20–30 cm for determining the microbial properties (microbial biomass carbon, Cmic; basal respiration, BR). Soil chemical properties (the organic C content, total C, N, P, K, and Ca; and pH) have been measured in the samples taken in July. The EMsurf of steppe averaged 24 g СО2/(m2 day), which was 1.6, 1.5 and 6 times higher than that of forest, urban, and fallow soils, respectively. In the forest, EM10 and EM20 were two times higher than reference EMsurf; they were similar in the fallow and urban soils; and they were by 34% lower in the steppe soil. The soil CO2 emission of studied ecosystems depended weakly on soil temperature and water content during the growing season. The Cmic and BR (0–10 cm) of undisturbed ecosystems (steppe, forest) were higher by, on average, 3–5 and 2–4 times, respectively, than those of disturbed (fallow, urban) ecosystems. The positive correlations between EMsurf and Cmic, BR (0–10 cm) were found (r = 0.56 and 0.74, respectively). The seasonal average EMsurf for different land uses was controlled mainly (78%) by soil BR (linear regression). Therefore, the EMsurf from Chernozems of different land uses during the growing season might be predicted on the basis of BR measurements (0–10 cm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. A. Blagodatskii, I. N. Bogomolova, and E. V. Blagodatskaya, “Microbial biomass and growth kinetics of microorganisms in chernozems under different land uses,” Microbiology (Moscow) 77, 99–106 (2008).

    Article  Google Scholar 

  2. S. N. Gorbov and O. S. Bezuglova, “Biological activity of urban soils in Rostov-on-Don,” Nauchn. Zh. Kuban. Gos. Agrar. Univ., No. 85, 1–15 (2013).

  3. D. V. Karelin, S. V. Goryachkin, A. V. Kudikov, V. O. Lopes de Gerenu, V. N. Lunin, A. V. Dolgikh, and D. I. Lyuri, “Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia,” Eurasian Soil Sci. 50, 559–572 (2017).

    Article  Google Scholar 

  4. D. V. Karelin, D. I. Lyuri, S. V. Goryachkin, V. N. Lunin, and A. V. Kudikov, “Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the chernozems forest-steppe,” Eurasian Soil Sci. 48, 1229–1241 (2015).

    Article  Google Scholar 

  5. B. N. Makarov, “Air regime of soddy-podzolic soil,” Pochvovedenie, No. 11, 98–107 (1966).

    Google Scholar 

  6. D. A. Sarzhanov, V. I. Vasenev, Yu. L. Sotnikova, A. Tembo, I. I. Vasenev, and R. Valentini, “Short-term dynamics and spatial heterogeneity of CO2 emission from the soils of natural and urban ecosystems in the Central Chernozemic Region,” Eurasian Soil Sci. 48, 416–424 (2015).

    Article  Google Scholar 

  7. A. V. Smagin, A. V. Dolgikh, and D. V. Karelin, “Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod,” Eurasian Soil Sci. 49, 450–456 (2016).

    Article  Google Scholar 

  8. V. Acosta-Martínez, L. Cruz, D. Sotomayor-Ramírez, and L. Pérez-Alegría, “Enzyme activities as affected by soil properties and land use in a tropical watershed,” Appl. Soil Ecol. 35, 35–45 (2007). https://doi.org/10.1016/j.apsoil.2006.05.012

    Article  Google Scholar 

  9. R. Alvarez, C. R. Alvarez, and G. Lorenzo, “Carbon dioxide fluxes following tillage from a Mollisol in the Argentine Rolling Pampa,” Eur. J. Soil Biol. 37, 161–166 (2001). https://doi.org/10.1016/S1164-5563(01)01085-8

    Article  Google Scholar 

  10. N. D. Ananyeva, E. A. Susyan, O. V. Chernova, and S. Wirth, “Microbial respiration activities of soils from different climatic regions of European Russia,” Eur. J. Soil Biol. 44 (2), 147–157 (2008). https://doi.org/10.1016/j.ejsobi.2007.05.002

    Article  Google Scholar 

  11. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 215–221 (1978). https://doi.org/10.1016/0038-0717(78)90099-8

    Article  Google Scholar 

  12. H. Arai, A. Hadi, U. Darung, S. H. Limin, H. Takahashi, R. Hatano, and K. Inubushi, “Land use change affects microbial biomass and fluxes of carbon dioxide and nitrous oxide in tropical peatlands,” Soil Sci. Plant Nutr. 60, 423–434 (2014). https://doi.org/10.1080/00380768.2014.903576

    Article  Google Scholar 

  13. A. Bekele, L. Kellman, and H. Beltrami, “Soil profile CO2 concentrations in forested and clear cut sites in Nova Scotia,” Can. For. Ecol. Manage. 242, 587–597 (2007). https://doi.org/10.1016/j.foreco.2007.01.088

    Article  Google Scholar 

  14. L. Beyer, H. P. Blume, D. C. Elsner, and A. Willnow, “Soil organic matter composition and microbial activity in urban soils,” Sci. Total Environ. 168, 267–278 (1995). https://doi.org/10.1016/0048-9697(95)04704-5

    Article  Google Scholar 

  15. B. Bond-Lamberty and A. Thomson, “A global database of soil respiration data,” Biogeosciences 7, 1915–1926 (2010). https://doi.org/10.5194/bg-7-1915-2010

    Article  Google Scholar 

  16. R. E. Creamer, R. P. O. Schulte, D. Stone, A. Gal, P. H. Krogh, G. Lo Papa, P. J. Murray, G. Pérès, B. Foerster, M. Rutgers, J. P. Sousa, and A. Winding, “Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter?” Ecol. Indic. 36, 409–418 (2014). https://doi.org/10.1016/j.ecolind.2013.08.015

    Article  Google Scholar 

  17. E. A. Davidson and S. E. Trumbore, “Gas diffusivity and production of CO2 in deep soils of the eastern Amazon,” Tellus 47, 550–565 (1995). https://doi.org/10.3402/tellusb.v47i5.16071

    Article  Google Scholar 

  18. S. M. Decina, L. R. Hutyra, C. K. Gately, J. M. Getson, A. B. Reinmann, A. G. S. Gianotti, and P. H. Templer, “Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area,” Environ. Pollut. 212, 433–439 (2016). https://doi.org/10.1016/j.envpol.2016.01.012

    Article  Google Scholar 

  19. Y. Dong, S. Zhang, Y. Qi, Z. Chen, and Y. Geng, “Fluxes of CO2, N2O and CH4 from typical temperate grassland in Inner Mongolia and its daily variation,” Chin. Sci. Bull. 45 (17), 1590–1594 (2000). https://doi.org/10.1007/BF02886219

    Article  Google Scholar 

  20. B. H. Ellert and H. H. Janzen, “Short-term influence of tillage on CO2 fluxes from a semi-arid soil on the Canadian Prairies,” Soil Tillage Res. 50, 21–32 (1999). https://doi.org/10.1016/S0167-1987(98)00188-3

    Article  Google Scholar 

  21. M. Gispert, M. Emran, G. Pardini, S. Doni, and B. Ceccanti, “The impact of land management and abandonment on soil enzymatic activity, glomalin content and aggregate stability,” Geoderma 202–203, 51–61 (2013). https://doi.org/10.1016/j.geoderma.2013.03.012

    Article  Google Scholar 

  22. S. Goffin, M. Aubinet, M. Maier, C. Plain, H. Schack-Kirchner, and B. Longdoz, “Characterization of the soil CO2 production and its carbon isotope composition in forest soil layers using the flux-gradient approach,” Agric. Meteorol. 188, 45–57 (2014). https://doi.org/10.1016/j.agrformet.2013.11.005

    Article  Google Scholar 

  23. L. B. Guo and M. Gifford, “Soil carbon stocks and land use change: a meta-analysis,” Global Change Biol. 8, 345–360 (2002). https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  24. Y. Hamada and T. Tanaka, “Dynamics of carbon dioxide in soil profiles based on long-term field observation,” Hydrol. Process. 15, 1829–1845 (2001). https://doi.org/10.1002/hyp.242

    Article  Google Scholar 

  25. S. Hashimoto and H. Komatsu, “Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses,” J. For. Res. 11, 41–50 (2006). https://doi.org/10.1007/s10310-005-0185-4

    Article  Google Scholar 

  26. R. L. B. Hooke, J. F. Martin-Duque, and J. Pedraza, “Land transformation by humans: a review,” GSA Today 22 (12), 4–10 (2012). https://doi.org/10.1130/GSAT151A.1

    Article  Google Scholar 

  27. R. A. Houghton, J. I. House, J. Pongratz, G. R. Werf, R. S. DeFries, M. C. Hansen, C. L. Quere, and N. Ramankutty, “Carbon emissions from land use and land-cover change,” Biogeosciences 9, 5125–5142 (2012). https://doi.org/10.5194/bg-9-5125-2012

    Article  Google Scholar 

  28. J. Iqbal, R. Hu, M. Feng, S. Lin, S. Malghani, and I. M. Ali, “Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at Three Gorges Reservoir area, South China,” Agric., Ecosyst. Environ. 137, 294–307 (2010). https://doi.org/10.1016/j.agee.2010.02.015

    Article  Google Scholar 

  29. K. Jangid, M. A. Williams, A. J. Franzluebbers, T. M. Schmidt, D. C. Coleman, and W. B. Whitman, “Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties,” Soil Biol. Biochem. 43, 2184–2193 (2011). https://doi.org/10.1016/j.soilbio.2011.06.022

    Article  Google Scholar 

  30. R. Jassal, A. Black, M. Novak, K. Morgenstern, Z. Nesic, and D. Gaumont-Guay, “Relationship between soil CO2 concentrations and forest-floor CO2 effluxes,” Agric. Meteorol. 130, 176–192 (2005). https://doi.org/10.1016/j.agrformet.2005.03.005

    Article  Google Scholar 

  31. E. Jong and H. J. V. Schappert, “Calculation of soil respiration and activity from CO2 profiles in the soil,” Soil Sci. 113 (5), 328–333 (1972).

    Article  Google Scholar 

  32. J. P. Kaye, R. L. McCulley, and I. C. Bu, “Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems,” Global Change Biol. 11, 575–587 (2005). https://doi.org/10.1111/j.1365-2486.2005.00921.x

    Article  Google Scholar 

  33. B. Koerner and J. Klopatek, “Anthropogenic and natural CO2 emission sources in an arid urban environment,” Environ. Pollut. 116, 45–51 (2002).

    Article  Google Scholar 

  34. R. Lal, “Why carbon sequestration in agricultural soils,” in Agricultural Practices and Policies for Carbon Sequestration in Soil (CRC Press, Boca Raton, 2012), pp. 21–30.

    Google Scholar 

  35. H. Li, X. Han, Y. Qiao, X. Hou, and B. Xing, “Carbon dioxide emission from Black Soil as influenced by land-use change and long-term fertilization,” Commun. Soil Sci. Plant. Anal. 40, 1350–1368 (2009). https://doi.org/10.1080/00103620902761585

    Article  Google Scholar 

  36. G. Liang, H. Wu, A. A. Houssou, D. Cail, X. Wu, L. Gao, B. Wang, and S. Li, “Soil respiration, glomalin content, and enzymatic activity response to straw application in a wheat-maize rotation system,” J. Soils Sediments, (2017). https://doi.org/10.1007/s11368-017-1817-y

  37. C. M. Litton, M. G. Ryan, D. H. Knight, and P. D. Stanl, “Soil-surface carbon dioxide efflux and microbial biomass in relation to tree density 13 years after a stand replacing fire in a lodge pole pine ecosystem,” Global Change Biol. 9, 680–696 (2003). https://doi.org/10.1046/j.1365-2486.2003.00626.x

    Article  Google Scholar 

  38. K. Lorenz and E. Kandeler, “Microbial biomass and activities in urban soils in two consecutive years,” J. Plant Nutr. Soil Sci. 169, 799–808 (2006). https://doi.org/10.1002/jpln.200622001

    Article  Google Scholar 

  39. K. Lorenz and R. Lal, “Biogeochemical C and N cycles in urban soils,” Environ. Int. 35, 1–8 (2009). https://doi.org/10.1016/j.envint.2008.05.006

    Article  Google Scholar 

  40. Y. Lou, Z. Li, T. Zhang, and Y. Liang, “CO2 emissions from subtropical arable soils of China,” Soil Biol. Biochem. 36, 1835–1842 (2004). https://doi.org/10.1016/j.soilbio.2004.05.006

    Article  Google Scholar 

  41. I. Mariscal-Sancho, J. Santano, M. A. Mendiola, F. Peregrina, and R. Espejo, “Carbon dioxide emission rates and β-glucosidase activity in Mediterranean Ultisols under different soil management,” Soil Sci. 175, 453–460 (2010). https://doi.org/10.1097/SS.0b013e3181f51704

    Article  Google Scholar 

  42. E. A. Mikhalkova and C. J. Post, “Organic carbon stocks in the Russian chernozem,” Eur. J. Soil Sci. 57, 330–336 (2006). https://doi.org/10.1111/j.1365-2389.2005.00741.x

    Article  Google Scholar 

  43. D. Nsabimana, R. J. Haynes, and F. M. Wallis, “Size, activity and catabolic diversity of the soil microbial biomass as affected by land use,” Appl. Soil Ecol. 26, 81–92 (2004). https://doi.org/10.1016/j.apsoil.2003.12.005

    Article  Google Scholar 

  44. M. Rastogi, S. Singh, and H. Pathak, “Emission of carbon dioxide from soil,” Curr. Sci. 82 (5), 510–517 (2002).

    Google Scholar 

  45. A. Rey, “Mind the gap: non-biological processes contributing to soil CO2 efflux,” Global Change Biol. 21, 1752–1761 (2015). https://doi.org/10.1111/gcb.12821

    Article  Google Scholar 

  46. D. A. Sarzhanov, V. I. Vasenev, I. I. Vasenev, Y. L. Sotnikov, O. V. Ryzhkov, and T. Morin, “Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia,” Catena 158, 131–140 (2017).https://doi.org/10.1016/j.catena.2017.06.02147

  47. W. H. Schlesinger and J. A. Andrews, “Soil respiration and the global carbon cycle,” Biogeochemistry 48, 7–20 (2000).https://doi.org/10.1023/A:1006247623877

  48. J. A. Subke, I. Ingima, and M. F. Cotrufo, “Trends and methodological impacts in soil CO2 efflux partitioning: a meta-analytical review,” Global Change Biol. 12, 921–943 (2006). https://doi.org/10.1111/j.1365-2486.2006.01117.x

    Article  Google Scholar 

  49. C. M. Tate and R. G. Striegl, “Methane consumption and carbon dioxide emission in tall-grass prairie: effects of biomass burning and conversion to agriculture,” Global Biogeochem. Cycles 7 (4), 735–748 (1993). https://doi.org/10.1029/93GB02560

    Article  Google Scholar 

  50. W. J. Wang, R. C. Dalal, P. W. Moody, and C. J. Smith, “Relationships of soil respiration to microbial biomass, substrate availability and clay content,” Soil Biol. Biochem. 35, 273–284 (2003). https://doi.org/10.1016/S0038-0717(02)00274-2

    Article  Google Scholar 

  51. L. F. Weissert, J. A. Salmond, and L. Schwendenmann, “Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types,” Geoderma 271, 80–90 (2016). https://doi.org/10.1016/j.geoderma.2016.02.014

    Article  Google Scholar 

  52. F. Wiaux, M. Vanclooster, and K. V. Oost, “Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope,” Biogeosciences 12, 4637–4649 (2015). https://doi.org/10.5194/bg-12-4637-2015

    Article  Google Scholar 

  53. M. Xu and Y. Qi, “Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern,” Calif. Global Change Biol. 7, 667–677 (2001). https://doi.org/10.1046/j.1354-1013.2001.00435.x

    Article  Google Scholar 

  54. M. You, Y. Yuan, L. Li, Y. Xu, and X. Han, “Soil CO2 emissions as affected by 20-year continuous cropping in Mollisols,” J. Integr. Agric. 13 (3), 615–623 (2014). https://doi.org/10.1016/S2095-3119(13)60719-4

    Article  Google Scholar 

  55. D. Zhao, F. Li, R. Wang, Q. Yang, and H. Ni, “Effect of soil sealing on the microbial biomass, N transformation and related enzyme activities at various depths of soils in urban area of Beijing, China,” J. Soils Sediments 12, 519–530 (2012). https://doi.org/10.1007/s11368-012-0472-6

    Article  Google Scholar 

Download references

Funding

Field studies were carried out with the partial financial support of the Presidium program of RAS no. 51. Soil microbial and chemical analysis were supported of the Russian Science Foundation grant no. 19-77-30012. Data processing and publication preparation was performed within the framework of the Russian Federation Government Task reg. no. 0191-2019-0045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Ananyeva.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushko, S.V., Ananyeva, N.D., Ivashchenko, K.V. et al. Soil CO2 Emission, Microbial Biomass, and Basal Respiration of Chernozems under Different Land Uses. Eurasian Soil Sc. 52, 1091–1100 (2019). https://doi.org/10.1134/S1064229319090096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319090096

Keywords:

Navigation