Skip to main content
Log in

Combined Application of Imaging Methods for Estimating Soil Physicochemical Properties

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Traditional techniques and methods for evaluation and detection of soil samples are tedious, laborious, expensive, and time-consuming. In comparison, spectroscopic techniques have successfully overcome some of these disadvantages and can supplement or replace them. As soil is a complex media, it is difficult to assign specifically spectral features for physicochemical properties of soil. This study discusses the combined application of Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), and Scanning Electron Microscopy coupled to EDX microprobe (SEM/EDX) methods for estimating soil physicochemical properties. For this purpose, 30 topsoil samples were measured according to standard methods of soil analysis. All spectra were collected in the mid-infrared (MIR) from 4000 to 650 cm-1. Chemometric methods were used in the analysis of multivariate data using the Quant2 package in OPUS 7 software and improved the prediction of soil properties using partial least squares regression (PLSR). The results showed that specific surface area (SSA MB-titration) had the best predictions for the soil properties in ATR-FTIR study with a RPD of 2.08, RMSE of 13.50 m2 g–1, and R2 of 0.77 (very good); followed by cation exchange capacity, organic carbon, SSA (BET), Al, clay, and Ca (good); saturation, sand, silt/clay, electrical conductivity, saturated hydraulic conductivity, K, silt, Fe, C, and Si (fair); O, Mg, pH, bulk density, porosity, total pore volume, and particle density (poor). Also, we found that SEM-EDX is able to perform a rapid simultaneous multielement analysis without any special soil sample preparation. Consequently, modern techniques, such as ATR-FTIR and SEM-EDX can be used for such studies according to the information needed and the time required for the sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. Romeiro Araújo, M. Söderström, J. Eriksson, C. Isendahl, P. Stenborg, and J. A. M. Demattê, “Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy,” Geoderma 237, 308–317 (2015). https://doi.org/10.1016/j.geoderma.2014.09.014

    Article  Google Scholar 

  2. V. Bellon-Maurel and A. McBratney, “Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stocks in soils—critical review and research perspectives,” Soil. Biol. Biochem. 43, 1398–1410 (2011). https://doi.org/10.1016/j.soilbio.2011.02.019

    Article  Google Scholar 

  3. M. R. Carter and E. G. Gregorich, Soil Sampling and Methods of Analysis, 2nd ed. (CRC Press, Boca Raton, 2008).

    Google Scholar 

  4. M. Choel, K. Deboudt, and P. Flament, “Development of time-resolved description of aerosol properties at the particle scale during an episode of industrial pollution plume,” Water, Air Soil Pollut. 209, 93–107 (2010). https://doi.org/10.1007/s11270-009-0183-9

    Article  Google Scholar 

  5. M. Choel, K. Deboudt, j Osan, P. Flament, and R. van Grieken, “Quantitative determination of low-Z elements in single atmospheric particles on Boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry,” Anal. Chem. 77, 5686–5692 (2005). https://doi.org/10.1021/ac050739x

    Article  Google Scholar 

  6. I. G. Chong and C. H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemom. Intell. Lab. Syst. 78, 103–112 (2005).https://doi.org/10.1016/j.chemolab.2004.12.011

    Article  Google Scholar 

  7. J. H. Dane and C. G. Topp, Methods of Soil Analysis, Part 4: Physical Methods, SSSA Book Series 5.4 (Soil Science Society of America, Madison, WI, 2002).

  8. H. G. M. Edwards, E. M. Newton, and J. Russ, “Raman spectroscopic analysis of pigments and substrata in prehistoric rock art,” J. Mol. Struct. 550, 245–256 (2000). https://doi.org/10.1016/S0022-2860(00)00389-6

    Article  Google Scholar 

  9. A. P. Fernández-Getino, Z. Hernández, A. Piedra Buena, and G. Almendros, “Exploratory analysis of the structural variability of forest soil humic acids based on multivariate processing of infrared spectral data,” Eur. J. Soil Sci. 64, 66–79 (2013). https://doi.org/10.1111/ejss.12016

    Article  Google Scholar 

  10. K. G. Giniyatullin, A. A. Shinkarev, G. A. Krinari, T. Z. Lygina, A. M. Gubaidullina, A.G. Kornilova, and L. V. Mel’nikov, “Irreversible fixation of organic components in labile interspaces as a mechanism for the chemical stabilization of clay-organic structures,” Eurasian Soil Sci. 45, 1068–1080 (2012). https://doi.org/10.1134/S1064229312050043

    Article  Google Scholar 

  11. K. G. Giniyatullin, A. A. Shinkarev, G. A. Krinari, T. Z. Lygina, A. M. Gubaidullina, A.G. Kornilova, and L. V. Mel’nikov, “Binding of organic matter into an oxidation-resistant form during the interaction of clay minerals with plant residues,” Eurasian Soil Sci. 43, 1159–1173 (2010). https://doi.org/10.1134/S1064229310100091

    Article  Google Scholar 

  12. A. Gobrecht, J. M. Roger, and V. Bellon-Maurel, “Major issues of diffuse reflectance NIR spectroscopy in the specific context of soil carbon content estimation: a review,” in Advances in Agronomy, Ed. by D. L. Sparks (Academic, London, 2014), Vol. 123, pp. 145–175. https://doi.org/10.1016/B978-0-12-420225-2.00004-2

    Google Scholar 

  13. N. Goienaga, A. Sarmiento, M. Olivares, J. Antonio Carrero, L. A. Fernández, and J. M. Madariaga, “Emerging application of a structural and chemical analyzer for the complete characterization of metal-rich particulate matter,” Anal. Chem. 85, 7173–7181 (2013). https://doi.org/10.1021/ac400878y

    Article  Google Scholar 

  14. L. Gomez-Nubla, J. Aramendia, A. Alonso-Olazabal, S. Fdez-Ortiz de Vallejuelo, K. Castro, L. A. Ortega, and J. M. Madariaga, “Darwin impact glass study by Raman spectroscopy in combination with other spectroscopic techniques,” J. Raman Spectrosc. 46 (10), 913–919 (2015). https://doi.org/10.1002/jrs.4700

    Article  Google Scholar 

  15. A. Gredilla, S. F. de Vallejuelo, N. Elejoste, A. de Diego, and J. M. Madariaga, “Non-destructive spectroscopy combined with chemometrics as a tool for Green chemical analysis of environmental samples,” Trends Anal. Chem. 76, 30–39 (2016). https://doi.org/10.1016/j.trac.2015.11.011

    Article  Google Scholar 

  16. S. Hapca, P. C. Baveye, C. Wilson, R. M. Lark, and W. Otten, “Three-dimensional mapping of soil chemical characteristics at micrometric scale by combining 2D SEM-EDX data and 3D X-Ray CT images,” PLoS One 10 (9), e0137205 (2015).

    Article  Google Scholar 

  17. A. Horta, B. Malone, U. Stockmann, B. Minasny, T. F. A. Bishop, and L. Pozza, “Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review,” Geoderma 241, 180–209 (2015). https://doi.org/10.1016/j.geoderma.2014.11.024

    Article  Google Scholar 

  18. P. M. Jardine, J. C. Parker, and M. A. Stewart, Decreasing Toxic Metal Bioavailability with Novel Soil Amendment Strategies: Final Report CU-1350 (Strategic Environmental Research and Development Program, Alexandria, VA, 2007).

  19. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 6th ed. (Pearson Education, New Jersey, NJ, 2007).

    Google Scholar 

  20. A. Kiros, V. Lazic, G. E. Gigante, and A. V. Gholap, “Analysis of rock samples collected from rock hewn churches of Lalibela, Ethiopia using laser-induced breakdown spectroscopy,” J. Archaeol. Sci. 40, 2570–2578 (2013). https://doi.org/10.1016/j.jas.2013.01.028

    Article  Google Scholar 

  21. A. D. Lorna and S. Hillier, “Measurement of soil characteristics for forensic applications,” Surf. Interface Anal. 42, 363–377 (2010). https://doi.org/10.1002/sia.3315

    Article  Google Scholar 

  22. J. Moros, R. J. Cassella, M. C. Barciela-Alonso, A. Moreda-Piñeiro, P. Herbello-Hermelo, P. Bermejo-Barrera, and M. De la Guardia, “Estuarine sediment quality assessment by Fourier-transform infrared spectroscopy,” Vib. Spectrosc. 53, 204–213 (2010). https://doi.org/10.1016/j.vibspec.2010.03.001

    Article  Google Scholar 

  23. L. W. Petersen, P. Moldrup, O. H. Jacobsen, and D. E. Rolston, “Relations between specific surface area and soil physical and chemical properties,” Soil Sci. 161, 9–21 (1996).

    Article  Google Scholar 

  24. E. F. M. Pinheiro, M. B. Ceddia, C. M. Clingensmith, S. Grunwald, and G. M. Vasques, “Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the central Amazon,” Remote Sens. 9, 1–22 (2017). https://doi.org/10.3390/rs9040293

    Article  Google Scholar 

  25. R. Ravisankar, G. Senthilkumar, S. Kiruba, A. Chandrasekaran, and P. P. Jebakumar, “Mineral analysis of coastal sediment samples of Tuna, Gujarat,” Indian J. Sci. Technol. 3, 858–862 (2010).

    Google Scholar 

  26. J. B. Reeves, “Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?” Geoderma 158, 3–14 (2010). https://doi.org/10.1016/j.geoderma.2009.04.005

    Article  Google Scholar 

  27. J. B. Reeves, R. F. Follett, G. W. McCarthy, and J. M. Kimble, “Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools?” Commun. Soil. Sci. Plant Anal. 37, 2307–2325 (2006). https://doi.org/10.1080/00103620600819461

    Article  Google Scholar 

  28. A. Rinnan, F. V. Berg, and S. B. Engelsen, “Review of the most common preprocessing techniques for near-infrared spectra,” Trends Anal. Chem. 28, 1201–1222 (2009). https://doi.org/10.1016/j.trac.2009.07.007

    Article  Google Scholar 

  29. B. J. Saikia and G. Parthasarathy, “Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India,” J. Modern Phys. 1, 206–210 (2010). https://doi.org/10.4236/jmp.2010.14031

    Google Scholar 

  30. R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging (Wiley, Weinheim, 2014).

    Google Scholar 

  31. R. Signorell and J. P. Reid, Fundamental and Application in Aerosols Spectroscopy (CRC Press, Boca Raton, 2017). pp. 218–250.

    Google Scholar 

  32. F. S. Terra, J. A. M. Dematte, and R. A. Viscarra-Rossel, “Spectral libraries for quantitative analysis of tropical Brazilian soils: comparing VIS-NIR and MIR reflectance data,” Geoderma 255, 81–93 (2015). https://doi.org/10.1016/j.geoderma.2015.04.017

    Article  Google Scholar 

  33. R. A. Viscarra Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma 158, 46–54 (2010). https://doi.org/10.1016/j.geoderma.2009.12.025

    Article  Google Scholar 

  34. R. A. Viscarra Rossel and R. M. Lark, Improved analysis and modeling of soil diffuse reflectance spectra using wavelets,” Eur. J. Soil Sci. 60, 453–464 (2009). https://doi.org/10.1111/j.1365-2389.2009.01121

    Article  Google Scholar 

  35. R. A. Viscarra Rossel, R. N. McGlynn, and A. B. McBratney, “Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy,” Geoderma 137, 70–82 (2006). https://doi.org/10.1016/j.geoderma.2006.07.004

    Article  Google Scholar 

  36. B. Woods, C. Lennard, K. P. Kirkbride, and J. Robertson, “Soil examination for a forensic trace evidence laboratory—Part 1: Spectroscopic techniques,” Forensic Sci. Int. 245, 187–192 (2014). https://doi.org/10.1016/j.forsciint.2014.08.009

    Article  Google Scholar 

  37. Y. Yukselen and A. Kaya, “Comparison of methods for determining specific surface area of soils,” J. Geotech. Geoenviron. Eng. 132, 931–936 (2006).

    Article  Google Scholar 

Download references

Funding

This study was funded by Shahid Beheshti University, Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Aghamir.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghamir, F., Hamidi, S.M., Tehranchi, M.M. et al. Combined Application of Imaging Methods for Estimating Soil Physicochemical Properties. Eurasian Soil Sc. 52, 926–934 (2019). https://doi.org/10.1134/S1064229319080027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319080027

Keywords:

Navigation