Skip to main content
Log in

Microbiological Transformation of Organic Matter in Oil-Polluted Tundra Soils after Their Reclamation

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The influence of oil pollution caused by the accident of 1994 on the biological activity of Histic Cryosols is considered. Despite the use of complex mechanical (oil removal), physicochemical (washing on special devices), and agrotechnical (fertilization, plowing, grass sowing) reclamation techniques, the residual content of oil hydrocarbons in the soils can reach high values. The disturbance of the natural peat soil horizon during the reclamation procedures reduces the respiratory activity, as well as the potential rate of consuming the substrates, plant residues and water-soluble organic matter, which decreases the carbon cycle rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. P. Alekseeva, T. I. Burmistrova, L. D. Stkahina, and N. N. Tershchenko, “Efficiency of ameliorants based on activated peat for remediation of oil-polluted soils,” Vestn. Tomsk. Gos. Univ., Biol., No. 2, 43–51 (2013).

  2. A. A. Vershinin, A. M. Petrov, D. V. Akaikin, and Yu. A. Ignat’ev, “Assessing the biological activity of oil-contaminated soddy-podzolic soils with different textures,” Eurasian Soil Sci. 47, 134–139 (2014). https://doi.org/10.1134/S1064229314020124

    Article  Google Scholar 

  3. A. N. Gennadiev and Yu. I. Pikovskii, “ The maps of soil tolerance toward pollution with oil products and polycyclic aromatic hydrocarbons: methodological aspects,” Eurasian Soil Sci. 40, 70–81 (2007).

    Article  Google Scholar 

  4. N. A. Kireeva, V. V. Vodop’yanov, and A. M. Miftakhova, Biological Activity of Oil-Polluted Soils (Gilem, Ufa, 2001) [in Russian].

    Google Scholar 

  5. N. A. Kireeva, G. R. Rafikova, T. N. Shchemelina, and M. Yu. Markarova, “Biological activity of oil-polluted and reclaimed peat gley soils of the Komi Republic,” Agrokhimiya, No. 8, 68–75 (2008).

    Google Scholar 

  6. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  7. A. V. Kurakov, V. V. Il’inskii, S. V. Kotelevtsev, and A. P. Sadchikov, Bioindication and Rehabilitation of Ecosystems after Oil Pollution (Grafikon, Moscow, 2006) [in Russian].

    Google Scholar 

  8. M. I. Makarov, M. S. Shuleva, T. I. Malysheva, and O. V. Menyailo, “Solubility of the labile forms of soil carbon and nitrogen in K2SO4 of different concentrations,” Eurasian Soil Sci. 46, 369–374 (2013). https://doi.org/10.1134/S1064229313040091

    Article  Google Scholar 

  9. M. I. Makarov, O. S. Mulyukova, T. I. Malysheva, and O. V. Menyailo, “Influence of drying of the samples on the transformation of nitrogen and carbon compounds in mountain-meadow alpine soils,” Eurasian Soil Sci. 46, 778–787 (2013). https://doi.org/10.1134/S1064229313070053

    Article  Google Scholar 

  10. M. Yu. Markarova, Candidate’s Dissertation in Biology (Perm, 1999).

  11. M. N. Maslov and M. I. Makarov, “Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia,” Eurasian Soil Sci. 49, 757–764 (2016). https://doi.org/10.1134/S1064229316070073

    Article  Google Scholar 

  12. E. N. Melekhina, M. Yu. Markarova, T. N. Shchemelinina, E. M. Anchugova, and V. A. Kanev, “Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods,” Eurasian Soil Sci. 48, 643–653 (2015). https://doi.org/10.1134/S1064229315060071

    Article  Google Scholar 

  13. E. S. Mil’ko and N. S. Egorov, Heterogeneity of Bacterial Population and Dissociation Process (Moscow State Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  14. Yu. I. Pikovskii, A. N. Gennadiev, S. S. Chernyanskii, and G. N. Sakharov, “The problem of diagnostics and standardization of the levels of soil pollution by oil and oil products,” Eurasian Soil Sci. 36, 1010–1017 (2003).

    Google Scholar 

  15. N. P. Tarabukina, D. D. Savvinov, M. M. Neustroev, A. M. Stepanova, M. P. Neustroev, N. N. Sazonov, and S. I. Parnikova, Ecological Evaluation and Bioremediation of Oil-Polluted Permafrost-Affected Soils of Yakutia (SibAK, Novosibirsk, 2017) [in Russian].

  16. Ecological Standardization and Quality Control of Soils and Lands (NIA-Priroda, Moscow, 2013) [in Russian].

  17. E. A. Asquith, P. M. Geary, and A. L. Nolan, “Comparative bioremediation of petroleum hydrocarbon-contaminated soil by biostimulation, bioaugmentation, and surfactant addition,” J. Environ. Sci. Eng. 1, 637–650 (2012).

    Google Scholar 

  18. Bioremediation of Petroleum Hydrocarbons in Cold Regions (Cambridge University Press, Cambridge, 2008).

  19. W. Chang, M. Dyen, L. Spagnuolo, Ph. Simon, L. Whyte, and S. Ghoshal, “Biodegradation of semi- and non-volatile petroleum hydrocarbons in aged, contaminated soils from a sub-Arctic site: Laboratory pilot-scale experiments at site temperatures,” Chemosphere 80, 319–326 (2010).

    Article  Google Scholar 

  20. IUSS Working Group WRB, World Reference Base for Soil Resources, World Soil Resources Reports No. 103 (Food and Agriculture Organization, Rome, 2006).

  21. R. Margesin, A. Zimmerbauer, and F. Schinner, “Monitoring of bioremediation by soil biological activities,” Chemosphere 40 (4), 339–346 (2000).

    Article  Google Scholar 

  22. W. W. Mohn and G. R. Stewart, “Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils,” Soil Biol. Biochem. 32, 1161–1172 (2000).

    Article  Google Scholar 

  23. Y.-S. Oh, W.-Y. Choi, Y.-H. Lee, S.-C. Choi, and S.‑J. Kim, “Biological treatment of oil-contaminated sand: comparison of oil degradation based on thin-layer chromatography/flame ionization detector and respirometric analysis,” Biotechnol. Lett. 22, 595–598 (2002).

    Article  Google Scholar 

  24. M. E. Ramirez, B. Zapien, H. G. Zegarra, N. G. Rojas, and L. C. Fernandez, “Assessment of hydrocarbon biodegradability in clayed and weathered polluted soils,” Int. Biodeterior. Biodegrad. 63, 347–353 (2009).

    Article  Google Scholar 

  25. D. Sanscartier, T. Laing, K. Reimer, and B. Zeeb, “Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: Laboratory and field studies,” Chemosphere 77, 1121–1126 (2009).

    Article  Google Scholar 

  26. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  27. A. Wolińska, A. Kuźniar, A. Szafranek-Nakonieczna, N. Jastrzębska, E. Roguska, and Z. Stępniewska, “Biological activity of autochthonic bacterial community in oil-contaminated soil,” Water, Air Soil Pollut. 227, 130 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the grant of President of the Russian Federation (project no. MK-1996.2017.5). The authors thank M.I. Makarov, Head of the Department of Soil Science of the Lomonosov Moscow State University, for the possibility to determine carbon in soil extracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Maslov.

Additional information

Translated by L. Kholopova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, M.N., Maslova, O.A. & Ezhelev, Z.S. Microbiological Transformation of Organic Matter in Oil-Polluted Tundra Soils after Their Reclamation. Eurasian Soil Sc. 52, 58–65 (2019). https://doi.org/10.1134/S1064229319010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319010101

Keywords:

Navigation