Skip to main content
Log in

From the Notion of Elementary Soil Particle to the Particle-Size and Microaggregate-Size Distribution Analyses: A Review

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A review of approaches to particle-size and microaggregate-size distribution analyses applied in soil science is given. The concepts of the structural organization of soils, primary soil particles, elementary soil particles, and soil microaggregates are considered. Methodological problems, such as the preparation of soil samples for the analyses and interpretation and comparison of the results obtained by different methods, are discussed. The authors suggest the theoretical substantiation of differences between the notions of primary soil particles (soil building units) and elementary soil particles. Primary soil particles are individual mineral particles. Elementary soil particles are solid-phase products of pedogenesis represented by fragments of rocks and minerals and by organomineral and organic particles, all the components of which participate in chemical and physicochemical interactions. Special attention is paid to the existing classifications of soils according to their textures. It is suggested that the upper boundary of the clay fraction in the Russian classification should be shifted from 1 to 2 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. V. Alekseeva, “Soil microstructure and factors of its formation,” Eurasian Soil Sci. 40, 649–659 (2007).

    Article  Google Scholar 

  2. I. N. Antipov-Karataev, “The concept about soil as a polydisperse system and its development in the Soviet Union in 1917–1942,” Pochvovedenie, No. 6, 3–26 (1943).

    Google Scholar 

  3. Z. S. Artem’eva, Organic Matter and Granulometric System of Soil (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  4. P. N. Berezin, “Specificity of particle-size distribution in soils and parent materials,” Pochvovedenie, No. 2, 64–72 (1983).

    Google Scholar 

  5. P. N. Berezin, Doctoral Dissertation in Biology (Moscow, 1995).

  6. M. A. Bronnikova and V. O. Targulian, Assemblage of Cutans in Texturally Differentiated Soils (Akademkniga, Moscow, 2005) [in Russian].

    Google Scholar 

  7. A. F. Vadyunina and Z. A. Korchagina, Physical Analysis of Soils (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  8. A. A. Valeeva and G. S. Koposov, “Influence of soil preparation on the interpretation of soil particle-size distribution data,” Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki 155 (2), 172–178 (2013).

    Google Scholar 

  9. A. Ya. Vanyushina and L. S. Travnikova, “Organic-mineral interactions in soils: a review,” Eurasian Soil Sci. 36, 379–387 (2003).

    Google Scholar 

  10. A. M. Vasil’ev, Analysis of Physical Properties of Soils (Gos. Izd. Mold., Chisinau, 1952) [in Russian].

    Google Scholar 

  11. A. M. Vasil’ev, “Physical constants of clay soils,” in Hydrogeology and Engineering Geology (Gosgeolizdat, Moscow, 1937), No. 4, pp. 37–40.

  12. A. D. Voronin, Structural-Functional Hydrophysics of Soils (Moscow State Univ., Moscow, 1984) [in Russian].

    Google Scholar 

  13. A. D. Voronin, “Active surface of the fractions of mechanical elements in soil complexes of the light chestnut soil subzone,” Nauchn. Dokl. Vyssh. Shk., Biol. Nauki, No. 3, (1959).

  14. K. K. Gedroits, Soil as a Cultural Environment for Agricultural Plants. Soil Colloids and Salinity of Soils According to the Data of Agrochemical Department of Nosovskaya Agricultural Experimental Station: A Review (Kiev-Pechat’, Kiev, 1926) [in Russian].

  15. M. I. Gerasimova, S. V. Gubin, and S. A. Shoba, Micromorphology of Soils of the Natural Zones of the Soviet Union (Pushchino Scientific Center, Russian Academy of Sciences, Pushchino, 1992) [in Russian].

    Google Scholar 

  16. GOST (State Standard) 12536-2014: Soils. Methods of Laboratory Granulometric (Grain-Size) and Microaggregate Distribution (Standartinform, Moscow, 2015) [in Russian].

  17. B. P. Gradusov, “Evolutionare stages of soddy-podzolic loamy soils,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 59, 14–22 (2007).

    Google Scholar 

  18. S. I. Dolgov, Agrophysical Analysis of Soils (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  19. F. R. Zaidel’man, Theory of the Development of Light Acid Eluvial Soil Horizons and Its Applied Aspects (Krasand, Moscow, 2010) [in Russian].

    Google Scholar 

  20. F. R. Zaidel’man and A. S. Nikiforova, “Ferromanganese concretionary neoformations: a review,” Eurasian Soil Sci. 43, 248–258 (2010).

    Article  Google Scholar 

  21. S. V. Zonn, Pedogenesis and Soil of the Tropics and Subtropics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  22. I. V. Ivanov, “The structure of soil systems,” in Soils, Biogeochemical Cycles, and the Biosphere (KMK, Moscow, 2004), pp. 50–69.

  23. N. A. Kachinskii, Mechanical and Microaggregate Composition of Soil and Methods for Its Study (Academy of Sciences of Soviet Union, Moscow, 1958) [in Russian].

    Google Scholar 

  24. N. A. Kachinskii, “The nature of soil structuring,” in Physics, Chemistry, Biology, and Mineralogy of Soils of the Soviet Union, Ed. by I. P. Gerasimov (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  25. D. S. Kashik, Methods of Mineralogical Studies: A Handbook (Nedra, Moscow, 1985), pp. 60–74.

    Google Scholar 

  26. A. V. Kinsht, “Chemical analysis of fine fractions of two types of soils with an eluvial–illuvial profile,” in Analysis of Siberian Soils (Novosibirsk, 1977) [in Russian].

  27. A. G. Kornilova, A. A. Shinkarev, T. Z. Lygina, K. G. Giniyatullin, and R. R. Gil’mutdinov, “Optimization of sample preparation for the bulk elemental analysis of the mineral part of forest-steppe soils,” Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki 153 (3), (2011).

  28. A. O. Makeev and O. V. Makeev, Soils with Texture-Differentiated Profiles in the Main Cryogenic Areas of the North of the Russian Plain (Scientific Center of Biological Studies, Academy of Sciences of the Soviet Union, Pushchino, 1989) [in Russian].

  29. A. A. Rode, Chemical Composition of Mechanical Fractions of Some Soils of Podzolic and Bog-Podzolic Types, Tr. Pochv. Inst. im. V.V. Dokuchaeva vol. 8 (Academy of Sciences of the Soviet Union, Leningrad, 1933) [in Russian].

    Google Scholar 

  30. B. G. Rozanov, Soil Morphology (Akademicheskii Proekt, Moscow, 2004) [in Russian]. ISBN 5-8291-0451-2.

    Google Scholar 

  31. S. V. Romanov, “Comparative characteristics of several methods of soil preparation for mechanical analysis,” Pochvovedenie, No. 4, 150–154 (1974).

    Google Scholar 

  32. E. M. Sergeev, Engineering Geology (Moscow State Univ., Moscow, 1982) [in Russian].

    Google Scholar 

  33. I. A. Sokolov, Pedogenesis and Exogenesis (Dokuchaev Soil Science Inst., Moscow, 1997) [in Russian].

    Google Scholar 

  34. T. A. Sokolova, “Transformation of clay material in some acid texture-differentiated soils with a bleached horizon,” in Problems in Soil Science (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  35. V. O. Targulian, “Elementary pedogenic processes,” Eurasian Soil Sci. 38, 1255–1264 (2005).

    Google Scholar 

  36. V. O. Targulian and S. V. Goryachkin, Soil Memory: Soil as the Memory of the Biosphere–Geosphere–Anthroposphere Interactions (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  37. N. A. Titova, L. S. Travnikova, and M. Sh. Shaimukhametov, “Development of the studies on interaction between organic and mineral components of soils,” Pochvovedenie, No. 5, 639–646 (1995).

    Google Scholar 

  38. N. A. Titova, L. S. Travnikova, and Yu. V. Kuvaeva, “The composition of the components of fine particles in arable soddy-podzolic soil,” Pochvovedenie, No. 6, 89–97 (1989).

    Google Scholar 

  39. V. D. Tonkonogov, Clay-Differentiated Soils of the European Part of Russia (Dokuchaev Soil Science Inst., Moscow, 1999) [in Russian].

    Google Scholar 

  40. V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, “General horizon- and profile-forming processes in Russian soils,” in Pedogenic Processes (Dokuchaev Soil Science Inst., Moscow, 2006) [in Russian].

    Google Scholar 

  41. T. V. Tursina, “Approaches to the study of the lithological homogeneity of soil profiles and soil polygenesis,” Eurasian Soil Sci. 45, 472–487 (2012).

    Article  Google Scholar 

  42. A. F. Tyulin, “Methods of peptization analysis in relation to general regularities in the chemical and physical properties of soils,” Pochvovedenie, Nos. 4–5, 3–15 (1943).

    Google Scholar 

  43. Chemical Encyclopedia, Vol. 1: Ablative Materials–Darzens Reaction (Sovetskaya Entsiklopediya, Moscow, 1988) [in Russian].

  44. N. B. Khitrov and O. A. Chechueva, “Interpretation of data on macro- and microstructure of soils,” Pochvovedenie, No. 2, 84–92 (1994).

    Google Scholar 

  45. N. P. Chizhikova and P. G. Panin, “Informativness of fine-dispersed part of paleosols and loesses of the Late and Middle Pleistocene in the center of the East European Plain,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 59, (2007).

  46. M. Sh. Shaimukhametov, N. A. Titova, L. S. Travnikova, and E. M. Labenets, “Physical fractionation methods for characterization of soil organic matter,” Pochvovedenie, No. 8, 131–141 (1984).

    Google Scholar 

  47. E. V. Shein, “The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification,” Eurasian Soil Sci. 42, 284–291 (2009).

    Article  Google Scholar 

  48. E. V. Shein, Soil Physics (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  49. E. V. Shein, T. A. Arkhangel’skaya, V. M. Goncharov, A. K. Guber, T. N. Pochatkova, M. A. Sidorova, A. V. Smagin, and A. B. Umarova, Field and Laboratory Analysis of Physical Properties and Regimes of Soils: Methodological Manual (Moscow State Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  50. E. V. Shein and T. N. Pochatkova, “Microaggregate analysis of soils,” in Theories and Methods of Soil Physics (Grif i K°, Moscow, 2007) [in Russian].

    Google Scholar 

  51. A. A. Shinkarev, A. G. Kornilova, F. A. Trofimova, A. S. Gordeev, K. G. Giniyatullin, and T. Z. Lygina, “Comparison of sedimentation and laser diffraction methods in the analysis of the granulometric composition of the clay fraction of soils,” Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki 152 (2), (2010).

  52. L. L. Shishov, Classification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 1997) [in Russian].

    Google Scholar 

  53. A. V. Yudina, “Granulometric composition and lithological heterogeneity of genetic horizons of soils of the Baer hills and associated landscapes,” Mater. Izuch. Russ. Pochv., No. 7 (34), 40–42 (2013).

  54. A. V. Yudina and E. Yu. Milanovskii, “Microaggregate analysis of soils by laser diffraction: specificity of sample pretreatment and interpretation of the results,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 89, 3–20 (2017).

    Google Scholar 

  55. T. M. Abu-Sharar, F. T. Bingham, and J. D. Rhoades, “Stability of soil aggregates as affected by electrolyte concentration and composition,” Soil Sci. Soc. Am. J. 51, 309–314 (1987).

    Article  Google Scholar 

  56. E. B. Alexander, Soils in Natural Landscapes (CRC Press, Boca Ration, Fl., 2013).

    Book  Google Scholar 

  57. W. Amelung and W. Zech, “Minimization of organic matter disruption during particle-size fractionation of grassland epipedons,” Geoderma 92 (1–2), 73–85 (1999).

    Article  Google Scholar 

  58. E. Amézketa, R. Aragüés, R. Carranza, and B. Urgel, “Macro- and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction,” Span. J. Agric. Res. 1 (4), 83–94 (2003).

    Article  Google Scholar 

  59. J. U. Anderson, “An improved pretreatment for mineralogical analysis of samples containing organic matter,” Clays Clay Miner. 10 (3), 380–388 (1963).

    Article  Google Scholar 

  60. M. P. Arnett, PhD Thesis (Texas A&M Univ., College Station, TX, 2009).

  61. L. M. Arya and J. F. Paris, “A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data,” Soil Sci. Soc. Am. J. 45 (6), 1023–1030 (1981).

    Article  Google Scholar 

  62. A. Atterberg, “Die mechanische Bodenanalyse und die Klassifikation der Mineralböden Schwedens,” Int. Mitt. Bodenkd. 2, 312–342 (1912).

    Google Scholar 

  63. P. Barak, K. McSweeney, and C. A. Seybold, “Self-similitude and fractal dimension of sand grains,” Soil Sci. Soc. Am. J. 60 (1), 72–76 (1996).

    Article  Google Scholar 

  64. L. Beuselinck, “Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method,” Catena 32 (3), 193–208 (1998).

    Article  Google Scholar 

  65. M. Bittelli, G. S. Campbell, and M. Flury, “Characterization of particle-size distribution in soils with a fragmentation model,” Soil Sci. Soc. Am. J. 63 (4), 782–788 (1999).

    Article  Google Scholar 

  66. S. J. Blott and K. Pye, “Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures,” Sedimentology 59 (7), 2071–2096 (2012).

    Article  Google Scholar 

  67. J. Bouma, “Using soil survey data for quantitative land evaluation,” Adv. Soil Sci. 9, 177–213 (1989).

    Article  Google Scholar 

  68. J. Bouma and H. A. J. van Lanen, “Transfer functions and threshold values: from soil characteristics to land qualities,” in Proceedings of the International Workshop on Quantified Land Evaluation Procedures, April 27–May 2, 1986 (Washington, DC, 1986), pp. 106–110.

  69. S. J. Bourget and C. B. Tanner, “Removal of organic matter with sodium hypobromite for particle-size analysis of soils,” Can. J. Agric. Sci. 33, 579–585 (1953).

    Google Scholar 

  70. T. G. Boyadgiev and W. H. Verheye, “Contribution to a utilitarian classification of gypsiferous soil,” Geoderma 74 (3–4), 321–338 (1996).

    Article  Google Scholar 

  71. G. D. Buchan, K. S. Grewal, and A. B. Robson, “Improved models of particle-size distribution: an illustration of model comparison techniques,” Soil Sci. Soc. Am. J. 57 (4), 901–908 (1993).

    Article  Google Scholar 

  72. P. Buurman, T. Pape, and C. C. Muggler, “Laser grain-size determination in soil genetic studies 1. Practical problems,” Soil Sci. 162 (3), 211–218 (1997).

    Article  Google Scholar 

  73. M. N. Camargo, E. Klamt, and J. H. Kauffman, Soil Classification as Used in Brazilian Soil Surveys, Annual Report of ISRIC (International Soil Reference and Information Centre, Wageningen, 1986), pp. 7–42.

    Google Scholar 

  74. C. Cerli, L. Celi, K. Kalbitz, G. Guggenberger, and K. Kaiser, “Separation of light and heavy organic matter fractions in soil—testing for proper density cut-off and dispersion level,” Geoderma 170, 403–416 (2012).

    Article  Google Scholar 

  75. A. Chappell, “Dispersing sandy soil for the measurement of particle size distributions using optical laser diffraction,” Catena 31 (4), 271–281 (1998).

    Article  Google Scholar 

  76. C. Chenu and A. T. Plante, “Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the 'primary organo-mineral complex,” Eur. J. Soil Sci. 57 (4), 596–607 (2006).

    Article  Google Scholar 

  77. C. Chenu, “Influence of a fungal polysaccharide, scleroglucan, on clay microstructures,” Soil Biol. Biochem. 21 (2), 299–305 (1989).

    Article  Google Scholar 

  78. D. J. Chittleborough, “Effect of the method of dispersion on the yield of clay and fine clay,” Aust. J. Soil Res. 20 (4), 339–346 (1982).

    Article  Google Scholar 

  79. B. T. Christensen, “Physical fractionation of soil and organic matter in primary particle size and density separates,” in Advances in Soil Science (Springer, New York, 1992), pp. 1–90.

    Google Scholar 

  80. B. T. Christensen, “Physical fractionation of soil and structural and functional complexity in organic matter turnover,” Eur. J. Soil Sci. 52 (3), 345–353 (2001).

    Article  Google Scholar 

  81. A. R. Dexter, “Advances in characterization of soil structure,” Soil Tillage Res. 11, 199–238 (1988).

    Article  Google Scholar 

  82. A. P. Edwards and J. M. Bremner, “Dispersion of soil particles by sonic vibration,” J. Soil Sci. 18, 47–63 (1967).

    Article  Google Scholar 

  83. A. P. Edwards and J. M. Bremner, “Dispersion of mineral colloids in soils using cation exchange resins,” Nature 205 (4967), 208–209 (1965).

    Article  Google Scholar 

  84. A. P. Edwards and J. M. Bremner, “Microaggregates in soils,” J. Soil Sci. 18 (1), 64–73 (1967).

    Article  Google Scholar 

  85. A. P. Edwards and J. M. Bremner, “Use of sonic vibration for separation of soil particles,” Can. J. Soil Sci. 44, 366 (1964).

    Article  Google Scholar 

  86. E. T. Elliott and C. A. Cambardella, “Physical separation of soil organic matter,” Agric., Ecosyst. Environ. 34 (1–4), 407–419 (1991).

    Article  Google Scholar 

  87. W. W. Emerson, “Determination of the contents of clay-sized particles in soils,” J. Soil Sci. 22 (1), 50–59 (1971).

    Article  Google Scholar 

  88. EN ISO 14688-1:2002: Geotechnical Investigation and Testing—Identification and Classification of Soil. Part 1. Identification and Description (Comité Européen de Normalization, Brussels, 2002).

  89. J. Eriksen, R. D. B. Lefroy, and G. J. Blair, “Physical protection of soil organic S studied using acetylacetone extraction at various intensities of ultrasonic dispersion,” Soil Biol. Biochem. 27 (8), 1005–1010 (1995).

    Article  Google Scholar 

  90. G. Eshel, “Critical evaluation of the use of laser diffraction for particle-size distribution analysis,” Soil Sci. Soc. Am. J. 68 (3), 736–743 (2004).

    Article  Google Scholar 

  91. L. Esmaeelnejad, F. Siavashi, J. Seyedmohammadi, and M. Shabanpour, “The best mathematical models describing particle size distribution of soils,” Model. Earth Syst. Environ. 2 (4), 166 (2016).

    Article  Google Scholar 

  92. K. Eusterhues, C. Rumpel, M. Kleber, and I. Kögel-Knabner, “Stabilization of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation,” Org. Geochem. 34 (12), 1591–1600 (2003).

    Article  Google Scholar 

  93. K. Eusterhues, C. Rumpel, and I. Kögel-Knabner, “Stabilization of soil organic matter isolated via oxidative degradation,” Org. Geochem. 36 (11), 1567–1575 (2005).

    Article  Google Scholar 

  94. FAO/UNESCO Soil Map of the World, Revised Legend (Food and Agriculture Organization, Rome, 1988).

  95. V. C. Farmer and B. D. Mitchell, “Occurrence of oxalates in soil clays following hydrogen peroxide treatment,” Soil Sci. 94 (4), 221–229 (1963).

    Article  Google Scholar 

  96. R. E. Francis and R. Aguilar, “Calcium carbonate effects on soil textural class in semiarid wild land soils,” Arid Land Res. Manage. 9 (2), 155–165 (1995).

    Google Scholar 

  97. M. D. Fredlund, G. W. Wilson, and D. G. Fredlund, “Use of the grain-size distribution for estimation of the soil-water characteristic curve,” Can. Geotech. J. 39 (5), 1103–1117 (2002).

    Article  Google Scholar 

  98. A. J. Fristensky and M. E. Grismer, “Evaluation of ultrasonic aggregate stability and rainfall erosion resistance of disturbed and amended soils in the Lake Tahoe Basin, USA,” Catena 79 (1), 93–102 (2009).

    Article  Google Scholar 

  99. W. R. Gardner, “Representation of soil aggregate-size distribution by a logarithmic-normal distribution,” Soil Sci. Soc. Am. J. 20 (2), 151–153 (1956).

    Article  Google Scholar 

  100. G. W. Gee and D. Or, “Particle-size analysis,” in Methods of Soil Analysis: Part 4 Physical Methods, Chap. 2: The Solid Phase, SSSA Book Series 5.4 (Soil Science Society of America, Madison, WI, 2002), No. 2.4.

  101. D. A. Genrich and J. M. Bremner, “A reevaluation of the ultrasonic-vibration method of dispersing soils,” Soil Sci. Soc. Am. J. 36 (6), 944–947 (1972).

    Article  Google Scholar 

  102. T. A. Ghezzehei, “Soil structure,” in Handbook of Soil Sciences: Properties and Processes, Ed. by P. Huang, Y. Li, and M. Sumner (CRC Press, Boca Raton, 2012), Vol. 2.

    Google Scholar 

  103. A. Golchin, J. M. Oades, J. O. Skjemstad, and P. Clarke, “Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy,” Soil Res. 32 (2), 285–309 (1994).

    Article  Google Scholar 

  104. D. J. Greenland, “Interactions between humic and fulvic acids and clays,” Soil Sci. 111 (1), 34–41 (1971).

    Article  Google Scholar 

  105. E. G. Gregorich, M. H. Beare, U. F. McKim, and J. O. Skjemstad, “Chemical and biological characteristics of physically uncomplexed organic matter,” Soil Sci. Soc. Am. J. 70 (3), 975–985 (2006).

    Article  Google Scholar 

  106. J. E. Guedez and R. Langohr, “Some characteristics of pseudo-silts in a soil-toposequence of the Llanos Orientals (Venezuela),” Pédologie 28, 118–131 (1978).

    Google Scholar 

  107. N. Q. Hai and K. Egashira, “Clay mineralogy of ferralitic soils derived from igneous rocks in Vietnam,” Clay Sci. 13 (6), 189–197 (2008).

    Google Scholar 

  108. P. R. Hesse, “Particle size distribution in gypsic soils,” Plant Soil 44 (1), 241–247 (1976).

    Article  Google Scholar 

  109. D. Hillel, Introduction to Environmental Soil Physics (Elsevier, Amsterdam, 2004).

    Google Scholar 

  110. C. G. Hopkins, “A plea for the scientific basis for the division of soil particles in mechanical analysis,” US Dep. Agric., Div. Chem. Bull. 56, 64–66 (1899).

    Google Scholar 

  111. F. Hu, C. Xu, H. Li, S. Li, Z. Yu, Y. Li, and X. He, “Particles interaction forces and their effects on soil aggregates breakdown Feinan,” Soil Tillage Res. 147, 1–9 (2015).

    Article  Google Scholar 

  112. C. R. Hunter and A. J. Busacca, “Dispersion of three andic soils by ultrasonic vibration,” Soil Sci. Soc. Am. J. 53 (4), 1299–1302 (1989).

    Article  Google Scholar 

  113. ISO 11277:2009: Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation (International Organization for Standardization, Geneva, 2009).

  114. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

  115. M. L. Jackson, Soil Chemical Analysis-Advanced Course (M.L. Jackson Publ., Madison, WI, 1969).

    Google Scholar 

  116. M. L. Jackson, L. D. Whittig, and R. P. Pennington, “Segregation procedure for the mineralogical analysis of soils,” Soil Sci. Soc. Am. Proc. 14, 77–81 (1950).

    Article  Google Scholar 

  117. P. M. Jardine, J. F. McCarthy, and N. L. Weber, “Mechanisms of dissolved organic carbon adsorption on soil,” Soil Sci. Soc. Am. J. 53 (5), 1378–1385 (1989).

    Article  Google Scholar 

  118. J. D. Jastrow and R. M. Miller, “Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations,” in Soil Processes and the Carbon Cycle, Ed. by R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart (CRC Press, Boca Raton, Fl., 1997), Vol. 11, pp. 207–223.

    Google Scholar 

  119. Z. Jiang and L. Liu, “A pretreatment method for grain size analysis of red mudstones,” Sediment. Geol. 241 (1–4), 13–21 (2011).

    Article  Google Scholar 

  120. A. F. Joseph and F. J. Martin, “The determination of clay in heavy soils,” J. Agric. Sci. 11 (3), 293–303 (1921).

    Article  Google Scholar 

  121. M. Kaiser and A. Asefaw Berhe, “How does sonication affect the mineral and organic constituents of soil aggregates?—A review,” J. Plant Nutr. Soil Sci. 177 (4), 479–495 (2014).

    Article  Google Scholar 

  122. M. Kaiser, A. A. Berhe, M. Sommer, and M. Kleber, “Application of ultrasound to disperse soil aggregates of high mechanical stability,” J. Plant Nutr. Soil Sci. 175 (4), 521–526 (2012).

    Article  Google Scholar 

  123. I. Kanno and S. Arimura, “Dispersion of humic allophane soils with supersonic vibration,” Soil Sci. Plant Nutr. 13 (6), 165–170 (1967).

    Article  Google Scholar 

  124. B. A. Keen, “Mechanical analysis: national and international,” Soil Res. 1 (1), 43–49 (1928).

    Google Scholar 

  125. W. D. Kemper and W. S. Chepil, “Size distribution of aggregates,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, Agronomy Monograph 9.1 (Soil Science Society of America, Madison, WI, 1965), Ch. 39.

  126. R. Kerry, B. G. Rawlins, M. A. Oliver, and A. M. Lacinska, “Problems with determining the particle size distribution of chalk soil and some of their implications,” Geoderma 152 (3–4), 324–337 (2009).

    Article  Google Scholar 

  127. R. Kiem and I. Kögel-Knabner, “Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions <6 μm,” Org. Geochem. 33 (12), 1699–1713 (2002).

    Article  Google Scholar 

  128. V. J. Kilmer and L. T. Alexander, “Methods of making mechanical analyses of soils,” Soil Sci. 68 (1), 15–24 (1949).

    Article  Google Scholar 

  129. M. Kleber, K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P. S. Nico, “Mineral–organic associations: formation, properties, and relevance in soil environments,” Adv. Agron. 130 (1), 1–140 (2015).

    Article  Google Scholar 

  130. M. Kleber, P. Sollins, and R. Sutton, “A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces,” Biogeochemistry 85 (1), 9–24 (2007).

    Article  Google Scholar 

  131. G. W. Kunze and J. Dixon, “Pretreatment for mineralogical analysis,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, SSSA Book Series 5.1, Ed. by A. Klute (Soil Science Society of America, Madison, WI, 1986).

    Google Scholar 

  132. J. Lehmann, J. Kinyangi, and D. Solomon, “Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms,” Biogeochemistry 85 (1), 45–57 (2007).

    Article  Google Scholar 

  133. M. Litaor, “The influence of eolian dust on the genesis of alpine soils in the Front Range, Colorado,” Soil Sci. Soc. Am. J. 51 (1), 142–147 (1987).

    Article  Google Scholar 

  134. R. J. Loch and J. L. Foley, “Measurement of aggregate breakdown at the rain: comparison with tests of water stability and relationship with field measurements of infiltration,” Aust. J. Soil. Res. 32, 701–720 (1994).

    Article  Google Scholar 

  135. J. L. Loizeau, D. Arbouille, S. Santiago, and J. P. Vernet, “Evaluation of wide-range laser diffraction grain size analyzer for use with sediments,” Sedimentology 41, 353–361 (1994).

    Article  Google Scholar 

  136. P. J. Loveland and W. R. Whalley, “Particle size analysis,” in Soil and Environmental Analysis: Physical Methods, Revised, and Expanded, Ed. by K. A. Smith and C. E. Mullins (CRC Pres, Boca Raton, Fl., 2001).

    Google Scholar 

  137. R.T. Martin, “Calcium oxalate formation in soils from hydrogen perozide treatment,” Soil Sci. 77 (2), 143–146 (1954).

    Article  Google Scholar 

  138. A. E. Matar and T. Doubleimy, Note on Proposed Method for the Mechanical Analysis of Gypsiferous Soils (Arab Center for the Studies of Arid Zones and Dry Lands, Damascus, 1978).

    Google Scholar 

  139. M. D. Matthews, “The effect of pretreatment on size analysis,” in Principles, Methods and Application of Particle Size Analysis (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  140. H. Mayer, A. Mentler, M. Papakyriacou, N. Rampazzo, Y. Marxer, and W. E. H. Blum, “Influence of vibration amplitude on the ultrasonic dispersion of soils,” Int. Agrophys. 16 (1), 53–60 (2002).

    Google Scholar 

  141. A. P. Mazurak, “Effect of gaseous phase on water-stable synthetic aggregates,” Soil Sci. 69 (2), 135–148 (1950).

    Article  Google Scholar 

  142. W. McLean, “Effect of hydrogen peroxide on soil organic matter,” J. Agric. Sci. 21 (2), 251–261 (1931).

    Article  Google Scholar 

  143. W. McLean, “The nature of soil organic matter as shown by the attack of hydrogen peroxide,” J. Agric. Sci. 21 (4), 595–611 (1931).

    Article  Google Scholar 

  144. L. P. Meier and A. P. Menegatti, “A new, efficient, one-step method for the removal of organic matter from clay-containing sediments,” Clay Miner. 32, 557–563 (1997).

    Article  Google Scholar 

  145. A. P. Menegatti, G. L. Frueh-Green, and P. Stille, “Removal of organic matter by disodium peroxodisulphate; effects on mineral structure, chemical composition and physicochemical properties of some clay minerals,” Clay Miner. 4 (2), 247–257 (1999).

    Article  Google Scholar 

  146. A. Mentler, J. Schomakers, S. Kloss, S. Zechmeister-Boltenstern, R. Schuller, and H. Mayer, “Calibration of ultrasonic power output in water, ethanol and sodium polytungstate,” Int. Agrophys. 31 (4), 582–588 (2017).

    Article  Google Scholar 

  147. E. H. Mikhail and G. P. Briner, “Routine particle size analysis of soils using sodium hypochlorite and ultrasonic dispersion,” Soil Res. 16 (2), 241–244 (1978).

    Article  Google Scholar 

  148. R. Mikutta, M. Kleber, K. Kaiser, and R. Jahn, “Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate,” Soil Sci. Soc. Am. J. 69 (1), 120–135 (2005).

    Article  Google Scholar 

  149. F. A. Mileti, G. Langella, M. A. Prins, S. Vingiani, and F. Terribile, “The hidden nature of parent material in soils of Italian mountain ecosystems,” Geoderma 207, 291–309 (2013).

    Article  Google Scholar 

  150. C. Moni, D. Derrien, P. J. Hatton, B. Zeller, and M. Kleber, “Density fractions versus size separates: does physical fractionation isolate functional soil compartments?” Biogeosciences 9, 5181–5197 (2012).

    Article  Google Scholar 

  151. M. Murray, “Is laser particle size determination possible for carbonate rick lake sediments?” J. Paleolimnol. 27, 173–183 (2002).

    Article  Google Scholar 

  152. A. Nemes and W. J. Rawls, “Soil texture and particle-size distribution as input to estimate soil hydraulic properties,” Dev. Soil Sci. 30, 47–70 (2004).

    Google Scholar 

  153. K. Norrish and K. G. Tiller, “Subplasticity in Australian soils. V. Factors involved and techniques of dispersion,” Aust. J. Soil Res. 14 (3), 273–289 (1976).

    Article  Google Scholar 

  154. P. F. North, “Towards an absolute measurement of soil structural stability using ultrasound,” J. Soil Sci. 27 (4), 451–459 (1976).

    Article  Google Scholar 

  155. J. M. Oades and A. G. Waters, “Aggregate hierarchy in soils,” Aust. J. Soil Res. 29 (6), 815–825 (1991).

    Article  Google Scholar 

  156. A. Olmstead, L. T. Alexander, and H. E. Middleton, “A pipette method of mechanical analysis of soils, based on improved dispersion procedure,” US Dep. Agric. Tech. Bull. 170, (1930).

  157. M. J. Pearson, S. E. Monteith, R. R. Ferguson, C. T. Hallmark, W. H. Hudnall, H. C. Monger, T. G. Reinsch, and L. T. West, “A method to determine particle size distribution in soils with gypsum,” Geoderma 237, 318–324 (2015).

    Article  Google Scholar 

  158. K. Pennell, L. M. Abriola, and S. A. Boyd, “Surface area of soil organic matter reexamined,” Soil Sci. Soc. Am. J. 59 (4), 1012–1018 (1995).

    Article  Google Scholar 

  159. E. Perfect and B. D. Kay, “Applications of fractals in soil and tillage research: a review,” Soil Tillage Res. 36 (1–2), 1–20 (1995).

    Article  Google Scholar 

  160. E. Perfect and B. D. Kay, “Fractal theory applied to soil aggregation,” Soil Sci. Soc. Am. J. 55 (6), 1552–1558 (1991).

    Article  Google Scholar 

  161. R. Pini and G. Guidi, “Determination of soil microaggregates with laser light scattering,” Commun. Soil Sci. Plant Anal. 20 (1–2), 47–59 (1989).

    Article  Google Scholar 

  162. C. A. Piper, Soil and Plant Analysis (Wiley, New York, 1950).

    Google Scholar 

  163. I. Plaza, A. Ontiveros-Ortega, J. Calero, and V. Aranda, “Implication of zeta potential and surface free energy in the description of agricultural soil quality: effect of different cations and humic acids on degraded soils,” Soil Tillage Res. 146, 148–158 (2015).

    Article  Google Scholar 

  164. R. Protz and J. St. Arnaud, “The evaluation of four pretreatments used in particle-size distribution analyses,” Can. J. Soil Sci. 44, 345–351 (1964).

    Article  Google Scholar 

  165. E. D. Rivers, C. T. Hallmark, L. T. West, and L. R. Drees, “A technique for rapid removal of gypsum from soil samples,” Soil Sci. Soc. Am. J. 46, 1338–1340 (1982).

    Article  Google Scholar 

  166. G. W. Robinson, “Note on mechanical analysis of humus soils,” J. Agric. Sci. 12, 287–291 (1922).

    Article  Google Scholar 

  167. G. W. Robinson and J. O. Jones, “A method for determining the degree of humification of soil organic matter,” J. Agric. Sci. 15 (1), 26–29 (1925).

    Article  Google Scholar 

  168. S. S. Rousseva, “Data transformations between soil texture schemes,” Eur. J. Soil Sci. 48, 749–758 (1997).

    Article  Google Scholar 

  169. D. Sarkar and A. Haldar, Physical and Chemical Methods in Soils Analysis. Fundamental Concepts of Analytical Chemistry and Instrumental Techniques (New Age International, New Delhi, 2005).

    Google Scholar 

  170. K. E. Saxton and W. J. Rawls, “Soil water characteristic estimates by texture and organic matter for hydrologic solutions,” Soil Sci. Soc. Am. J. 70 (5), 1569–1578 (2006).

    Article  Google Scholar 

  171. M. W. I. Schmidt, C. Rumpel, and I. Kögel-Knabner, “Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils,” Eur. J. Soil Sci. 50 (1), 87–94 (1999).

    Article  Google Scholar 

  172. P. Schulte, F. Lehmkuhl, F. Steininger, D. Loibl, G. Lockot, J. Protze, P. Fischer, and G. Stauch, “Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess-paleosol sequences,” Catena 137, 392–405 (2016).

    Article  Google Scholar 

  173. H. R. Schulten and P. Leinweber, “New insights into organic-mineral particles: composition, properties and models of molecular structure,” Biol. Fertil. Soils 30 (5–6), 399–432 (2000).

    Article  Google Scholar 

  174. H. R. Schulten, P. Leinweber, and C. Sorge, “Composition of organic matter in particle-size fractions of an agricultural soil,” J. Soil Sci. 44 (4), 677–691 (1993).

    Article  Google Scholar 

  175. S. M. Shevchenko and G. W. Bailey, “Non-bonded organo-mineral interactions and sorption of organic compounds on soil surfaces: a model approach,” J. Mol. Struct.: THEOCHEM 422 (1), 259–270 (1998).

    Article  Google Scholar 

  176. L. G. Shield and M. W. Meyer, “Carbonate clay: measurement and relationship to clay distribution and cation-exchange capacity,” Soil Sci. Soc. Am. J. 28 (3), 416–419 (1964).

    Article  Google Scholar 

  177. R. W. Simonson, “Sources of particle-size limits for soil separates,” Soil Horiz. 40 (2), 50–58 (1999).

    Article  Google Scholar 

  178. J. M. Skopp, “Physical properties of primary particles,” in Soil Physics Companion, Ed. by A. W. Warrick (CRC Press, Boca Raton, Fl., 2002).

    Google Scholar 

  179. M. R. Soares, L. R. Alleoni, P. Vidal-Torrado, and M. Cooper, “Mineralogy and ion exchange properties of the particle size fractions of some Brazilian soils in tropical humid areas,” Geoderma 125 (3), 355–367 (2005).

    Article  Google Scholar 

  180. Staff Soil Survey Keys to Soil Taxonomy (USDA National Resources Conservation Service, National Soil Survey Center, Lincoln, 2010).

  181. G. B. Stirk, “Expression of soil aggregate distributions,” Soil Sci. 86 (3), 133–135 (1958).

    Article  Google Scholar 

  182. Stuff Soil Survey Division, Soil Survey Manual, USDA Handbook 18 (U.S. Government Publishing Office, Washington, DC, 1993).

  183. M. E. Sumner, Handbook of Soil Science (CRC Press, Boca Raton, Fl., 1999).

    Google Scholar 

  184. D. Sun, J. Bloemendal, D. K. Rea, J. Vandenberghe, F. Jiang, Z. An, and R. Su, “Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of sedimentary components,” Sediment. Geol. 152, 262–267 (2002).

    Article  Google Scholar 

  185. O. Tamm, “Determination of the inorganic components of the gel-complex in soils,” Medd. Stat. Skogförsöd. 19, 387–404 (1922).

    Google Scholar 

  186. H. Taubner, B. Roth, and R. Tippkötter, “Determination of soil texture: comparison of the sedimentation method and the laser-diffraction analysis,” J. Plant Nutr. Soil Sci. 172 (2), 161–171 (2009).

    Article  Google Scholar 

  187. A. A. Theisen, D. D. Evans, and M. E. Harward, “Effect of dispersion techniques on mechanical analysis of Oregon soils,” Agric. Exp. Stat. Oregon State Univ. Tech. Bull. 104, 1–18 (1968).

  188. J. M. Tisdall and J. M. Oades, “Organic matter and water-stable aggregates in soils,” J. Soil Sci. 33, 141–163 (1982).

    Article  Google Scholar 

  189. K. U. Totsche, W. Amelung, M. H. Gerzabek, G. Guggenberger, E. Klumpp, C. Knief, L. Lehndorff, R. Mikutta, S. Peth, A. Prechtel, N. Ray, and I. Kögel-Knaber, “Microaggregates in soils,” J. Plant Nutr. Soil Sci. 18 (1), 104–136 (2018).

    Article  Google Scholar 

  190. E. Troell, “The use of sodium hypobromite for the oxidation of organic matter in the mechanical analysis of soils,” J. Agric. Sci. 21 (3), 476–483 (1931).

    Article  Google Scholar 

  191. E. Truog, J. R. Taylor, R. W. Pearson, M. E. Weeks, and R. W. Simonson, “Procedure for special type of mechanical and mineralogical soil analysis,” Soil Sci. Soc. Am. J. 1, 101–112 (1937).

    Article  Google Scholar 

  192. D. L. Turcotte, “Fractals and fragmentation,” J. Geophys. Res.: Solid Earth 91 (2), 1921–1926 (1986).

    Article  Google Scholar 

  193. S. W. Tyler and S. W. Wheatcraft, “Fractal scaling of soil particle-size distributions: analysis and limitations,” Soil Sci. Soc. Am. J. 56, 362–369 (1992).

    Article  Google Scholar 

  194. E. H. Tyner, “The use of sodium metaphosphate for dispersion of soils for mechanical analysis,” Soil Sci. Soc. Am., Proc. 4, 106–113 (1940).

    Google Scholar 

  195. S. Uziak, “The mineral composition of clay fractions from a fossil loess soil,” Pol. J. Soil Sci. 10 (2), 157–164 (1977).

    Google Scholar 

  196. T. Vaasma, “Grain-size analysis of lacustrine sediments: a comparison of pre-treatment methods,” Est. J. Ecol. 57 (4), 231–243 (2008).

    Article  Google Scholar 

  197. C. H. M. van Bavel, “Mean-weight diameter of soil aggregates as a statistical index of aggregation,” Soil Sci. Soc. Am. J. 14, 20–23 (1950.

    Article  Google Scholar 

  198. H. van Olphen, An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists (Wiley, New York, 1977).

    Google Scholar 

  199. J. Vandenberghe, “Grain size of fine-grained windblown sediment: a powerful proxy for process identification,” Earth-Sci. Rev. 121, 18–30 (2013).

    Article  Google Scholar 

  200. J. Vieillefon, “Contribution to the improvement of analysis of gypsiferous soils,” in Management of Gypsiferous Soils (Food and Agriculture Organization, Rome, 1997).

    Google Scholar 

  201. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “SOM fractionation methods: relevance to functional pools and to stabilization mechanisms,” Soil Biol. Biochem. 39 (9), 2183–2207 (2007).

    Article  Google Scholar 

  202. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57 (4), 426–445 (2006).

    Article  Google Scholar 

  203. E. K. Walton, W. E. Stephens, and M. S. Shawa, “Reading segmented grain-size curves,” Geol. Mag. 117 (6), 517–524 (1980).

    Article  Google Scholar 

  204. Y. J. Wang, C. B. Li, W. Wang, D. M. Zhou, R. K. Xu, and S. P. Friedman, “Wien effect determination of adsorption energies between heavy metal ions and soil particles,” Soil Sci. Soc. Am. J. 72 (1), 56–62 (2008).

    Article  Google Scholar 

  205. W. Weipeng, L. Jianli, Z. Bingzi, Z. Jiabao, L. Xiaopeng, and Y. Yifan, “Critical evaluation of particle size distribution models using soil data obtained with a laser diffraction method,” PloS One 10 (4), 1–18 (2015).

    Article  Google Scholar 

  206. G. J. Weltje and M. A. Prins, “Genetically meaningful decomposition of grain-size distributions,” Sediment. Geol. 202 (3), 409–424 (2007).

    Article  Google Scholar 

  207. R. Westerhof, P. Buurman, C. van Griethuysen, M. Ayarza, L. Vilela, and W. Zech, “Aggregation studied by laser diffraction in relation to plowing and liming in the Cerrado region in Brazil,” Geoderma 90 (3–4), 277–290 (1999).

    Article  Google Scholar 

  208. J. H. M. Wösten, Y. A. Pachepsky, and W. J. Rawls, “Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics,” J. Hydrol. 251 (3), 123–150 (2001).

    Article  Google Scholar 

  209. F. Yang, G. L. Zhang, F. Yang, and R. M. Yang, “Pedogenetic interpretations of particle-size distribution curves for an alpine environment,” Geoderma 282, 9–15 (2016).

    Article  Google Scholar 

  210. G. Yuan, M. Soma, H. Seyama, B. K. G. Theng, L. M. Lavkulich, and T. Takamatsu, “Assessing the surface composition of soil particles from some podzolic soils by X-ray photoelectron spectroscopy,” Geoderma 86 (3), 169–181 (1998).

    Article  Google Scholar 

  211. Z. Yutong, X. Qing, and L. Shenggao, “Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China),” Environ. Sci. Pollut. Res. 23 (14), 14600–14607 (2016).

    Article  Google Scholar 

  212. H. Zhang and P. R. Bloom, “Dissolution kinetics of hornblende in organic acid solutions,” Soil Sci. Soc. Am. J. 63 (4), 815–822 (1999).

    Article  Google Scholar 

  213. T. M. Zobeck, “Rapid soil particle size analyses using laser diffraction,” Appl. Eng. Agric. 20 (5), 633–639 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 18-34-00825. The authors are grateful to Dr. N.B. Khitrov and Dr. E.B. Skvortsova for fruitful discussions and valuable comments and questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yudina.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudina, A.V., Fomin, D.S., Kotelnikova, A.D. et al. From the Notion of Elementary Soil Particle to the Particle-Size and Microaggregate-Size Distribution Analyses: A Review. Eurasian Soil Sc. 51, 1326–1347 (2018). https://doi.org/10.1134/S1064229318110091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318110091

Keywords:

Navigation