Skip to main content
Log in

Humus Forms in Forest Soils: Concepts and Classifications

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The concepts and classifications of humus forms developed since the time of scientific pedology formation are critically discussed. The concept of humus forms (types) relates to the classification of a set of topsoil organic and organomineral horizons, which reflects morphologically distinct phases of plant litter and soil organic matter decomposition, but not to the fractions of soil organic matter. Humus forms reflect various types of transformation and accumulation of organic matter in the soil. The stages of development and modern classifications of humus forms abroad are described. The taxonomy of humus forms in Russian literature and its application for the mapping and evaluation of forest soils are considered, as well as its use for the mathematical simulation of soil organic matter mineralization and humification. Prospects for the development of the classification of humus forms in combination with the basic soil classification of European Russia are discussed. A call for an understanding and a common language in soil science at the international level is underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. B. Archegova, “Some aspects of the theoretical definition of soils,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 1, 98–103 (2015).

    Google Scholar 

  2. O. N. Bakhmet, Doctoral Dissertation in Biology (Petrozavodsk, 2015).

    Google Scholar 

  3. N. L. Blagovidov and G. L. Burkov, Practical Manual on Soil Study and Characteristics of Forest Sites (Forest Technical Academy, Leningrad, 1959) [in Russian].

    Google Scholar 

  4. L. G. Bogatyrev, “Genesis of forest litters in different natural zones of the European part of Russia,” Lesovedenie, No. 4, 3–12 (1995).

    Google Scholar 

  5. L. G. Bogatyrev, “Structural and functional organization of terrestrial forms of detritus,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 28–39 (1992).

    Google Scholar 

  6. L. G. Bogatyrev, “Is litter an independent biogeocenotic natural object?” Ekologiya, No. 6, 3–7 (1990).

    Google Scholar 

  7. L. G. Bogatyrev, A. V. Ivanov, G. V. Matyshak, and A. A. Stepanov, “Specificity of the development of organic profile of dark-humus forest soils in the northeast of Kostroma oblast,” Lesovedenie, No. 3, 8–14 (2006).

    Google Scholar 

  8. L. G. Bogatyrev, O. B. Tsvetnova, E. V. Tsvetnov, and A. I. Shcheglov, “Characterization of detritus profiles in some ecosystems of southern Sakhalin,” Moscow Univ. Soil Sci. Bull. 71, 7–13 (2016).

    Article  Google Scholar 

  9. D. V. Vorob’ev, Forest Types in the European Part of the Soviet Union (Academy of Sciences of Ukrainian SSR, Kiev, 1953) [in Russian].

    Google Scholar 

  10. M. I. Gerasimova, I. I. Lebedeva, and N. B. Khitrov, “Soil horizon designation: state of the art, problems, and proposals,” Eurasian Soil Sci. 46, 599–609 (2013). doi 10.1134/S1064229313050037

    Article  Google Scholar 

  11. M. A. Glazovskaya, Geochemistry of Natural and Technogenic Landscapes of the Soviet Union (Vysshaya Shkola, Moscow, 1988) [in Russian].

    Google Scholar 

  12. L. A. Grishina, Humus Formation and the Humus State of Soils (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  13. G. V. Dobrovol’skii, Structural and Functional Role of Soils and Soil Biota in the Biosphere (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  14. G. V. Dobrovol’skii and E. D. Nikitin, Ecological Functions of Soils (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  15. P. Duchaufour, Precis de pedologie (Masson, Paris, 1960; Mir, Moscow, 1970).

    Google Scholar 

  16. I. V. Zaboeva, Soils and Land Resources of the Komi ASSR (Komi Knizhn. Izd., Syktyvkar, 1975) [in Russian].

    Google Scholar 

  17. S. V. Zonn, Influence of Forest on Soils (Academy of Sciences of USSR, Moscow, 1954) [in Russian].

    Google Scholar 

  18. A. M. Ivlev, Evolution of Soils (Far Eastern Federal Univ., Vladivostok, 2005) [in Russian].

    Google Scholar 

  19. Information and reference system for the classification of soils in Russia v. 1.0. https://doi.org/infosoil.ru/index.php?pageID=home.

  20. L. O. Karpachevskii, Ecological Soil Science (GEOS, Moscow, 2005) [in Russian].

    Google Scholar 

  21. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  22. Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  23. Modeling of the Dynamics of Organic Matter in Forest Ecosystems, Ed. by V. N. Kudeyarov (Nauka, Moscow, 2007) [in Russian].

  24. I. N. Korkina and E. L. Vorobeichik, “The humus index: a promising tool for environmental monitoring,” Russ. J. Ecol. 47, 526–531 (2016).

    Article  Google Scholar 

  25. Correlation of Taxonomic Units of the Classification and Diagnostics of Soils of the Soviet Union (1977) with Taxonomic Units of the Classification and Diagnostic System of Russian Soils (2008), Dokuchaev Soil Science Inst., Moscow. [in Russian].

  26. A. A. Krudener, Basics of Classification of Forest Stands: The Materials on the Russian Forests (Petrograd, 1916) [in Russian].

    Google Scholar 

  27. G. F. Morozov, Forest Science (Goslesbumizdat, Moscow, 1949) [in Russian].

    Google Scholar 

  28. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter of Russian Soils (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  29. V. V. Ponomareva, The Theory of Podzolization: Biochemical Aspects (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  30. Proceedings of the VII All-Russian Scientific Conference with International Participation “Theoretical and Applied Aspects of Forest Soil Science,” Petrozavodsk, September 13–17, 2017 (Petrozavodsk, 2017) [in Russian]. https://doi.org/www.krc.karelia.ru/event.php?id=289&plang=r.

  31. R. E. Ricklefs, The Economy of Nature (W.H. Freeman, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

  32. A. A. Rode, Soil Science (Lesbumizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  33. V. A. Rozhkov, “Dualism of the major notions of soil classification,” Eurasian Soil Sci. 47, 1–9 (2014).

    Article  Google Scholar 

  34. A. I. Romashkevich and M. I. Gerasimova, Micromorphology and Diagnostics of Pedogenesis (Nauka, Moscow, 1982) [in Russian]. https://doi.org/www.twirpx.com/file/1095325

    Google Scholar 

  35. I. A. Sokolov, Theoretical Problems in Genetic Soil Science (Gumanitarnye Nauki, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  36. Soil Memory: Soil as a Memory of the Biosphere–Geosphere–Anthroposphere Interactions, Ed. by V. O. Targulian and S. V. Goryachkin (Institute of Geography, Russian Academy of Sciences, Moscow, 2008) [in Russian].

  37. V. D. Tonkonogov, Automorphic Pedogenesis in Tundra and Taiga Zones of the East European and West Siberian Plains (Dokuchaev Soil Science Inst., Moscow, 2010) [in Russian].

    Google Scholar 

  38. I. V. Tyurin, “On the humus types in forest soils,” Pochvovedenie, Nos. 1–2, 34–46 (1943).

    Google Scholar 

  39. I. V. Tyurin and V. V. Ponomareva, “Materials on the study of humus in forest soils,” Tr. Lesotekh. Akad., No. 56, 3–49 (1940).

    Google Scholar 

  40. V. N. Fedorchuk, V. Yu. Neshataev, and M. L. Kuznetsova, Forest Ecosystems of the Northwestern Regions of Russia: Typology, Dynamics, and Economic Features (St. Petersburg, 2005) [in Russian].

    Google Scholar 

  41. A. E. Cherkinskii and O. A. Chichagova, “Types of organic profiles of the world soils,” in Global Geography of Soils and Pedogenesis Factors (Nauka, Moscow, 1991), pp. 164–195.

    Google Scholar 

  42. O. G. Chertov, “Characteristics of the types of humus profile in forest soils of Leningrad oblast,” Pochvovedenie, No. 3, 26–37 (1966).

    Google Scholar 

  43. O. G. Chertov, Ecology of Forest Lands (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  44. O. G. Chertov, A. S. Komarov, M. A. Nadporozhskaya, A. V. Mikhailov, S. S. Bykhovets, S. L. Zudin, and E. V. Zubkova, Dynamic Modeling of the Transformation of Soil Organic Matter. ROMUL Model (St. Petersburg State Univ., St. Petersburg, 2007) [in Russian].

    Google Scholar 

  45. O. G. Chertov and S. M. Razumovsky, “Ecological trends of soil development,” Zh. Obshch. Biol. 41, 386–396 (1980).

    Google Scholar 

  46. V. S. Shumakov, “The role of forest floor among forest felts,” in Role of Forest Floor in Forest Biogeocenoses (Nauka, Moscow, 1983), pp. 222–224.

    Google Scholar 

  47. E. Ewald, “Genetic and ecological analysis of soil organic matter,” Pochvovedenie, No. 2. 22–28 (1972).

    Google Scholar 

  48. E. Ewald, “The role of soil and its relation with vegetation in natural and anthropogenically disturbed biogeocenoses,” Pochvovedenie, No. 5, 29–39 (1980).

    Google Scholar 

  49. L. Bal, Micromorphological Analysis of Soils—Lower Levels in the Organization of Organic Soil Materials, Soil Survey Paper No. 6 (Soil Survey Institute, Wageningen, 1973).

    Google Scholar 

  50. R. Baritz, Humus Forms in Forests of the Northern German Lowlands (Technical University of Berlin, Berlin, 2001).

    Google Scholar 

  51. Bodenkundliche Kartieranleitung (Schweizerbartsche, Hannover, 2005).

  52. O. G. Chertov, A. S. Komarov, M. A. Nadporozhskaya, S. S. Bykhovets, and S. L. Zudin, “ROMUL—a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling,” Ecol. Model. 138, 289–308 (2001). doi 10.1016/S0304-3800(00)00409-9

    Article  Google Scholar 

  53. O. Chertov and M. Nadprozhskaya, “Development and application of humus form concept for soil classification, mapping, and dynamic modeling in Russia,” Appl. Soil Ecol. 123, 420–423 (2018). doi 10.1016/j.apsoil.2017.04.006

    Article  Google Scholar 

  54. Criteria and Indicators for Sustainable Forest Management: A Compendium, FAO Forest Management Working Paper No. 5 (Food and Agriculture Organization, Rome, 2001). https://doi.org/www.gilws05/docreptest/FAO/004/AC135E/AC135E00.htm.

  55. P. Galvan, S. Solaro, S. Chersich, et al., “Il ruolo della pedofauna nella variabilità spaziale e temporale delle forme di humus: indagini micromorfologiche su sezioni sottili ed osservazioni allo stereoscopio,” Forest 3, 555–561 (2006).

    Article  Google Scholar 

  56. Glossary of Soil Science Terms, Edaphology: The science that deals with the influence of soils on living things; particularly plants, including man’s use of land for plant growth. https://doi.org/www.soils.org/publications/soils-glossary.

  57. R. N. Green, R. L. Trowbridge, and K. Klinka, “Towards a taxonomic classification of humus forms,” For. Sci. Monogr. 29, 1–49 (1993).

    Google Scholar 

  58. Helsinki Process, European Criteria and Indicators for Sustainable Forest Management Adopted by the Expert Level Follow-Up Meetings of the Helsinki Conference in Geneva, June 1994 and Antalya, January 23, 1995 (Vienna, 1995).

  59. B. Jabiol, A. Zanella, J.-F. Ponge, G. Sartori, M. Englisch, B. van Delft, R. de Waal, and R.-C. Le Bayon, “A proposal for including humus forms in the World Reference Base for Soil Resources (WRB-FAO),” Geoderma 192, 286–294 (2013).

    Article  Google Scholar 

  60. New Trends in Soil Micromorphology, Ed. by S. Kapur and G. Stoops (Springer-Verlag, Berlin, 2008).

  61. K. Klinka, R. N. Green, R. L. Trowbridge, and L. E. Lowe, Taxonomic Classification of Humus Forms in Ecosystems of British Columbia (Ministry of Forests and Land Management, British Columbia, 1981), No. 8. https://doi.org/www.for.gov.bc.ca/hfd/pubs/docs/mr/lmr/lmr008.pdf.

  62. A. Komarov, O. Chertov, S. Zudin, M. Nadporozhskaya, A. Mikhailov, S. Bykhovets, E. Zudina, and E. Zoubkova, “EFIMOD 2—a model of growth and elements cycling in boreal forest ecosystems,” Ecol. Model. 170, 373–392 (2003). doi 10.1016/S0304-3800(03)00240

    Article  Google Scholar 

  63. A. Komarov, O. Chertov, S. Bykhovets, C. Shaw, M. Nadporoyzhskaya, P. Frolov, M. Shashkov, V. Shanin, P. Grabarnik, I. Priputina, and E. Zubkova, “Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing,” Ecol. Model. 345, 113–124 (2017). doi 10.1016/j.ecolmodel.2016.08.007

    Article  Google Scholar 

  64. W. L. Kubiëna, The Soils of Europe (Thomas Murby, London, 1953).

    Google Scholar 

  65. G. R. Larocque, A. Komarov, O. Chertov, V. Shanin, J. Liu, J. S. Bhatti, W. Wang, C. Peng, H. H. Shugart, W. Xi, and J. A. Holm, “Process-based models: a synthesis of models and applications to address environmental and management issues,” in Ecological Forest Management Handbook, Ed. by G. R. Larocque (CRC Press, Boca Raton, 2016), pp. 223–266.

    Google Scholar 

  66. D. M. Morris, J. P. Kimmins, I. Dan, and R. Duckert, “The use of soil organic matter as a criterion of the relative sustainability of forest management alternatives: a modeling approach using FORECAST,” For. Ecol. Manage. 94, 61–78 (1997).

    Article  Google Scholar 

  67. P. E. Müller, “Studier over skovjord, som bidrag til skovdyrkningens teori: om bögemuld og bögemor paa sand og ler,” Tidsskr. Skovbrug, No. 3, 1–124 (1879).

    Google Scholar 

  68. M. A. Nadporozhskaya, G. M. J. Mohren, O. G. Chertov, A. S. Komarov, and A. V. Mikhailov, “Soil organic matter dynamics at primary and secondary forest succession on sandy soils in The Netherlands: an application of soil organic matter model ROMUL,” Ecol. Model. 190 (3–4), 399–418 (2006). doi 10.1016/j.ecolmodel.2005.03.025

    Article  Google Scholar 

  69. Systematik der Humusformen, AG Humusformen der Deutschen Bodenkundlichen Gesellschaft, 2006. https://doi.org/www.humusformen.de

  70. S. A. Wilde, “Forest humus: its classification on genetic basis,” Soil Sci. 111, 1–12 (1971).

    Article  Google Scholar 

  71. S. A. Wilde, Forest Soils (Wiley, New York, 1958).

    Google Scholar 

  72. A. Yu. Yurova, E. M. Volodin, G. I. Ågren, O. G. Chertov, and A. S. Komarov, “Effects of variations in simulated changes in soil carbon contents and dynamics on future climate projections,” Global Change Biol. 16 (2), 823–835 (2010). doi 10.1111/j.1365-2486.2009.01992.x

    Article  Google Scholar 

  73. O. Zaiets and R. M. Poch, “Micromorphology of organic matter and humus in Mediterranean mountain soils,” Geoderma 272, 83–92 (2016). doi 10.1016/j.geoderma.2016.03.006

    Article  Google Scholar 

  74. A. Zanella and J. Ascher-Jenull, “Humusica 1, 2 and 3— Natural terrestrial humus systems,” Appl. Soil Ecol. 122 (1–3), 1–578 (2018). doi 10.1016/j.apsoil.2017.11.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Chertov.

Additional information

Original Russian Text © O.G. Chertov, M.A. Nadporozhskaya, 2018, published in Pochvovedenie, 2018, No. 10, pp. 1202–1214.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chertov, O.G., Nadporozhskaya, M.A. Humus Forms in Forest Soils: Concepts and Classifications. Eurasian Soil Sc. 51, 1142–1153 (2018). https://doi.org/10.1134/S1064229318100022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318100022

Keywords

Navigation