Skip to main content
Log in

Transformation of Trioctahedral Mica in the Upper Mineral Horizon of Podzolic Soil during the Two-Year-Long Field Experiment

  • Mineralogy and Micromorphology of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

An experiment on transformation of biotite (fraction <1 μm) particles placed into containers with different permeability in the AEL horizon of podzolic soil was performed in order to estimate the contribution of different factors to the transformation of biotite in the modern soil. After two-year-long incubation in the AEL horizon, biotite was transformed into vermiculite, mixed-layer biotite–vermiculite, and pedogenic chlorite. The most intense vermiculitization of the biotite took place under the impact of fungal hyphae and, to a lower degree, fine plant roots and components of the soil solution. The formation of labile structures from biotite was accompanied by thinning of the mica crystallites, the disturbance of the homogeneity of layers, the removal of interlayer K, the removal and oxidation of octahedral Fe, the increase in the sum of exchangeable cations, and the appearance of exchangeable Al. The process of chloritization was definitely diagnosed upon the action of plant roots and fungal hyphae on the biotite. Strong complexing anions released by fungal hyphae partly inhibited chloritization. Chloritization led to a decrease in the cation exchange capacity of vermiculitic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Alekseeva, T. Ya. Dronova, and T. A. Sokolova, “Chemical and mineralogical characteristics of podzolic and bog-podzolic soils developed from twolayered deposits in the Central Forest State Biospheric Reserve,” Moscow Univ. Soil Sci. Bull. 62, 140–148 (2007).

    Article  Google Scholar 

  2. A. G. Bulakh, Calculation of Mineral Formulae (Nedra, Moscow, 1964) [in Russian].

    Google Scholar 

  3. N. G. Vasil’ev and F. D. Ovcharenko, “The chemistry of the surfaces of the acid forms of natural layer silicates,” Russ. Chem. Rev. 46, 775–788 (1977).

    Article  Google Scholar 

  4. V. V. Egorov, V. M. Fridland, E. N. Evanova, N. N. Rozov, et al., Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

    Google Scholar 

  5. A. I. Matvienko, M. I. Makarov, and O. V. Menyailo, “Biological sources of soil CO2 under Larix sibirica and Pinus sylvestris,” Russ. J. Ecol. 45, 174–180 (2014).

    Article  Google Scholar 

  6. The X-Ray Identification and Crystal Structures of Clay Minerals, Ed. by G. Brown (Mineralogical Society, London, 1961; Mir, Moscow, 1965).

    Google Scholar 

  7. T. A. Sokolova, I. I. Tolpeshta, and I. V. Topunova, “Biotite weathering in podzolic soil under conditions of a model field experiment,” Eurasian Soil Sci. 43, 1150–1158 (2010).

    Article  Google Scholar 

  8. I. I. Tolpeshta and M. Leman, “Spatial variation and evaluation of additivity of parameters of the acid-base state of pale-podzolic soils of the Central Forest Nature Reserve,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 12–19 (2000).

    Google Scholar 

  9. I. I. Tolpeshta and T. A. Sokolova, “Extractable aluminum compounds in soils of the southern taiga (soils of the Central Forest Reserve as an example),” Eurasian Soil Sci. 43, 893–904 (2010).

    Article  Google Scholar 

  10. I. I. Tolpeshta and T. A. Sokolova, “Aluminum compounds in soil solutions and their migration in podzolic soils on two-layered deposits,” Eurasian Soil Sci. 42, 24–35 (2009).

    Article  Google Scholar 

  11. I. I. Tolpeshta, T. A. Sokolova, E. Bonifacio, and G. Falcone, “Pedogenic chlorites in podzolic soils with different intensities of hydromorphism: origin, properties, and conditions of their formation,” Eurasian Soil Sci. 43, 777–787 (2010).

    Article  Google Scholar 

  12. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  13. J. G. Acker and O. P. Bricker, “The influence of pH on biotite dissolution and alteration kinetics at low temperature,” Geochim. Cosmochim. Acta 56, 3073–3092 (1992).

    Article  Google Scholar 

  14. J. M. Arocena and K. R. Glowa, “Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition,” For. Ecol. Manage. 133, 61–70 (2000).

    Article  Google Scholar 

  15. J. M. Arocena, K. R. Glowa, H. B. Massicotte, and L. Lavkulich, “Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) in the Ae horizon on a luvisol,” Can. J. Soil. Sci. 79, 25–35 (1999).

    Article  Google Scholar 

  16. L. Augusto, J. Ranger, M.-P. Turpault, and P. Bonnaud, “Experimental in situ transformation of vermiculites to study the weathering impact of tree species on the soil,” Eur. J. Soil Sci. 52, 81–92 (2001).

    Article  Google Scholar 

  17. R. I. Barnhisel and P. M. Bertsch, “Chlorites and hydroxy-interlayered vermiculite and smectite,” in Weed. Minerals in Soil Environments, Ed. by J. B. Dixon (Soil Science Society of America, Madison, 1989), pp. 729–788.

    Google Scholar 

  18. E. B. A. Bisdom, G. Ctoops, J. Delvigne, P. Curmi, and H.-J. Altemuller, “Micromorphology of weathering biotite and its secondary products,” Pedologie 32 (2), 225–252 (1982).

    Google Scholar 

  19. S. Bonneville, D. J. Morgan, A. Schmalenberger, A. Bray, A. Brown, S. A. Banwart, and L. G. Benning, “Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha–mineral interface,” Geochim. Cosmochim. Acta 75, 6988–7005 (2011).

    Article  Google Scholar 

  20. V. Brahy and B. Delvaux, “Cation exchange resin and test vermiculite to study soil processes in situ in a toposequence of Luvisol and Cambisol on loess,” Eur. J. Soil Sci. 52 (3), 397–408 (2001).

    Article  Google Scholar 

  21. A. W. Bray, L. G. Benning, S. Bonneville, and E. H. Oelkers, “Biotite surface chemistry as a function of aqueous fluid composition,” Geochim. Cosmochim. Acta 128, 58–70 (2014).

    Article  Google Scholar 

  22. A. W. Bray, E. H. Oelkers, S. Bonneville, D. Wolff-Boenisch, N. J. Potts, G. Fones, and L. G. Benning, “The effect of pH, grain size, and organic ligands on biotite weathering rates,” Geochim. Cosmochim. Acta 164, 127–145 (2015).

    Article  Google Scholar 

  23. C. Calvaruso, M.-P. Turpault, and P. Frey-Klett, “Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis,” Appl. Environ. Microbiol. 72 (2), 1258–1266 (2006).

    Article  Google Scholar 

  24. L. Dzene, E. Ferrage, J.-C. Viennet, E. Tertre, and F. Hubert, “Crystal structure control of aluminized clay minerals on the mobility of cesium in contaminated soil environments,” Sci. Rep. 7 (4318), 1–12 (2017).

    Google Scholar 

  25. H. L. Ehrlich, Geomicrobiology (Marcel Dekker, New York, 2002).

    Google Scholar 

  26. V. C. Farmer, J. D. Russel, W. J. McHardy, A. C. D. Newman, J. L. Ahlrichs, and J. Y. H. Rimsaite, “Evidence for loss of protons and octachedral iron from oxidized biotites and vermiculites,” Miner. Mag. 38 (294), 12–13 (1971).

    Article  Google Scholar 

  27. A. W. Fordham, “Weathering of biotite into dioctahedral clay minerals,” Clay Miner. 25, 51–63 (1990).

    Article  Google Scholar 

  28. R. J. Gilkes, R. C. Young, and J. P. Quirk, “The oxidation of octahedral iron in biotite,” Clays Clay Miner. 20, 303–315 (1972).

    Article  Google Scholar 

  29. G. R. Gobran, M.-P. Turpault, and F. Courchesne, “Contribution of rhizospheric processes to mineral weathering in forest soils,” in Biogeochemistry of Trace Elements in the Rhizosphere (Elsevier, Amsterdam, 2005), pp. 3–26.

    Chapter  Google Scholar 

  30. P. J. Gregory, “Roots, rhizosphere and soil: the route to a better understanding of soil science,” Eur. J. Soil Sci. 57, 2–12 (2006).

    Article  Google Scholar 

  31. S. J. Haward, M. M. Smits, K. V. Ragnarsdottir, J. R. L. Ragnarsdottir, S. A. Banwart, and T. J. McMaster, “In situ atomic force microscopy measurements of biotite basal plane reactivity in the presence of oxalic acid,” Geochim. Cosmochim. Acta 75, 6870–6881 (2011).

    Article  Google Scholar 

  32. A. Heinemeyer, M. Wilkinson, R. Vargas, J.-A. Subke, E. Casella, J. I. L. Morison, and P. Ineson, “Exploring the “overflow tap” theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis,” Biogeosciences 9, 79–95 (2012).

    Article  Google Scholar 

  33. A. G. Jongmans and N. van Breemen, “Rock-eating fungi,” Nature 389 (16), 682–683 (1997).

    Article  Google Scholar 

  34. B. E. Kalinowsky and P. Schweda, “Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature,” Geochim. Cosmochim. Acta 60 (3), 367–385 (1996).

    Article  Google Scholar 

  35. B. S. Kapoor, “The formation of 2:1–2:2 intergrade clays in some Norwegian podzols,” Clay Miner. 10, 79–86 (1973).

    Article  Google Scholar 

  36. B. S. Kapoor, “Weathering of micaceous clays in some Norwegian podzols,” Clay Miner. 9, 383–394 (1972).

    Article  Google Scholar 

  37. B. Lanson, E. Ferrage, F. Hubert, D. Prêt, L. Marescha, M.-P. Turpault, and J. Ranger, “Experimental aluminization of vermiculite interlayers: an x-ray diffraction perspective on crystal chemistry and structural mechanisms,” Geoderma 249–250, 28–39 (2015).

    Article  Google Scholar 

  38. C. Leyval and J. Berthelin, “Weathering of a mica by roots and rhizospheric microorganisms of pine,” Soil Sci. Soc. Am. J. 55, 1009–1016 (1991).

    Article  Google Scholar 

  39. D. M. Moore and R. C. Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, Oxford, 1989).

    Google Scholar 

  40. T. Murakami, S. Utsunomiya, T. Yokoyama, and T. Kasama, “Biotite dissolution processes and mechanisms in the laboratory and in nature: Early stage weathering environment and vermiculitization,” Am. Miner. 88, 377–386 (2003).

    Article  Google Scholar 

  41. A. T. Nottingham, B. L. Turner, K. Winter, M.G. A. van der Heijden, and E. V. J. Tanner, “Arbuscular mycorrhizal mycelial respiration in a moist tropical forest,” New Phytol. 186, 957–967 (2010).

    Article  Google Scholar 

  42. M. Ochs, “Influence of humified and non-humified natural organic compounds on mineral dissolution,” Chem. Geol. 132, 119–124 (1996).

    Article  Google Scholar 

  43. F. Paris, P. Bonnaud, J. Ranger, and F. Lapeyrie, “In vitro weathering of phlogopite by ectomycorrhizal fungi I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution,” Plant Soil 177, 191–201 (1995).

    Article  Google Scholar 

  44. F. Paris, B. Botton, and F. Lapeyrie, “In vitro weathering of phlogopite by ectomycorrhizal fungi II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+,” Plant Soil 179, 141–150 (1996).

    Article  Google Scholar 

  45. J. R. Price and M. A. Velbel, “Rates of biotite weathering, and clay mineral transformation and neoformation, determined from watershed geochemical massbalance methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA,” Aquat. Geochem. 20, 203–224 (2014). https://doi.org/10.1007/s10498-013-9190-y.

    Article  Google Scholar 

  46. G. Ranger, E. Dambrine, M. Robert, D. Righi, and C. Felix, “Study of current soil-forming processes using bags of vermiculite and resins placed within soil horizons,” Geoderma 48, 335–350 (1991).

    Article  Google Scholar 

  47. J. Ranger and C. Nys, “The effect of spruce (Picea abies Karst.) on soil development: an analytical and experimental research,” Eur. J. Soil Sci. 45, 193–204 (1994).

    Article  Google Scholar 

  48. M. Robert and J. Berthelin, “Role of biological and biochemical factors in soil mineral weathering,” in Interaction of Minerals with Natural Organics and Microbes, Ed. by P. M. Huang and M. Schnitzer (Soil Science Society of America, Madison, 1986).

    Google Scholar 

  49. M.-P. Turpault, D. Righi, and C. Uterano, “Clay minerals: precise markers of the spatial and temporal variability of the biogeochemical soil environment,” Geoderma 147, 108–115 (2008).

    Article  Google Scholar 

  50. W. J. Ullman, D. L. Kirchman, S. A. Welch, and P. Vandevivere, “Laboratory evidence for microbially mediated silicate mineral dissolution in nature,” Chem. Geol. 132, 11–17 (1996).

    Article  Google Scholar 

  51. N. van Breemen, U. S. Lundstrom, and A. G. Jongmans, “Do plants drive podzolization via rock-eating mycorrhizal fungi?” Geoderma 94, 163–171 (2000).

    Article  Google Scholar 

  52. P. A. W. van Hees, D. L. Jones, G. Jentschke, and D. L. Godbold, “Mobilization of aluminium, iron and silicon by Picea abies and ectomycorrhizas in a forest soil,” Eur. J. Soil Sci. 55, 101–111 (2004).

    Article  Google Scholar 

  53. K. van Rompaey, E. van Ranst, A. Verdoodt, and F. de Coninck, “Use of the test-mineral technique to distinguish simple acidolysis from acido-complexolysis in a podzol profile,” Geoderma 137, 293–299 (2007).

    Article  Google Scholar 

  54. M. A. Vicente, M. Razzaghe, and M. Robert, “Formation of aluminium hydroxyl vermiculite (intergrade) and smectite from mica under acidic conditions,” Clay Miner. 12, 101–112 (1977).

    Article  Google Scholar 

  55. J.-C. Viennet, F. Hubert, E. Ferrage, E. Tertre, A. Legout, and M.-P. Turpault, “Investigation of clay mineralogy in temperate acidic soil of forest using x-ray diffraction profile modeling: beyond the HIS and HIV description,” Geoderma 241–242, 75–86 (2015).

    Article  Google Scholar 

  56. F. Vitali, F. J. Longstaffe, P. J. McCarthy, A. G. Plint, and W. G. E. Caldwell, “Stable isotopic investigation of clay minerals and pedogenesis in an interfluve paleosol from the Cenomanian Dunvegan Formation, N.E. British Columbia, Canada,” Chem. Geol. 192, 269–287 (2002).

    Article  Google Scholar 

  57. A. Voinot, D. Lemarchand, C. Collignon, M. Graneta, F. Chabaux, and M.-P. Turpault, “Experimental dissolution vs. transformation of micas under acidic soil conditions: clues from boron isotopes,” Geochim. Cosmochim. Acta 117, 144–160 (2013).

    Article  Google Scholar 

  58. H. Wallander and T. Wickman, “Biotite and microcline as potassium sources in ectomycorrhizal and nonmycorrhizal Pinus sylvestris seedlings,” Mycorrhiza 9, 25–32 (1999).

    Article  Google Scholar 

  59. W. Wang, J. Sun, C. Dong, and B. Lian, “Biotite weathering by Aspergillus niger and its potential utilization,” J. Soils Sediments 16, 1901–1910 (2016).

    Article  Google Scholar 

  60. M. Wojdyr, “Fityk: a general-purpose peak fitting program,” J. Appl. Cryst. 43, 1126–1128 (2010).

    Article  Google Scholar 

  61. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  62. IUSS Working Group WRB, World Reference Base for Soil Resources 2006, World Soil Resources Reports No. 103 (Food and Agriculture Organization, Rome, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Sokolova.

Additional information

Original Russian Text © I.I. Tolpeshta, T.A. Sokolova, A.A. Vorob’eva, Yu.G. Izosimova, 2018, published in Pochvovedenie, 2018, No. 7, pp. 902–915.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolpeshta, I.I., Sokolova, T.A., Vorob’eva, A.A. et al. Transformation of Trioctahedral Mica in the Upper Mineral Horizon of Podzolic Soil during the Two-Year-Long Field Experiment. Eurasian Soil Sc. 51, 843–856 (2018). https://doi.org/10.1134/S1064229318050125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318050125

Keywords

Navigation