Skip to main content
Log in

Restoration of Soils and Vegetation on Reclamation Sites of the Kingisepp Phosphorite Field

  • Degradation, Rehabilitation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Processes of initial soil formation were studied on long-term monitoring plots on dump rocks of quarry no. 3 of the Phosphorite production company in Kingisepp district of Leningrad oblast. Observations were performed in 1998, 2004, and 2014. It was shown that vegetation succession on the plots proceeds relatively quickly, and that the species composition of phytocenoses formed is typical of the areas with soddy-calcareous soils. Soil development proved to be correlated with the development of vegetation. Maximum changes in soil characteristics were observed with an increase in the density of forest vegetation and a decrease in the role of herbs. The molecular composition of humic acids in the studied soils remained stable; in particular, the ratio of aliphatic to alkyl aromatic fragments was virtually constant. This phenomenon could be due to the great amount of aliphatic components in the falloff of coniferous species subjected to humification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Abakumov and E. I. Gagarina, “Humus formation in carbonate soils of the quarry-dump complexes in the northwest of the Russian Plain,” Vestn. S.-Peterb. Univ., Ser. 3: Biol. 1 (3), 67–75 (2002).

    Google Scholar 

  2. E. V. Abakumov and E. I. Gagarina, Pedogenesis in Post-Technogenic Ecosystems of the Quarries in the Northwest of the Russian Plain (St. Petersburg State Univ., St. Petersburg, 2006) [in Russian].

    Google Scholar 

  3. L. N. Aleksandrova, Soil Organic Matter and Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  4. N. D. Ananyeva, E. A. Susyan, and E. G. Gavrilenko, “Determination of the soil microbial biomass carbon using the method of substrate-induced respiration,” Eurasian Soil Sci. 44, 1215–1221 (2011).

    Article  Google Scholar 

  5. I. B. Archegova, “Relation of humus with nontraditional understanding of soil,” Pochvovedenie, No. 1, 58–64 (1992).

    Google Scholar 

  6. I. B. Archegova, Efficient System of Nature Recovery as the Basis for Nature Management in the Extreme North (Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 1981), No. 412.

    Google Scholar 

  7. I. B. Archegova, E. G. Kuznetsova, F. M. Khabibullina, I. A. Likhanova, and A. N. Panyukov, “Accelerated recovery of disturbed northern territories: theoretical and applied aspects,” Mezhd. Zh. Prikl. Fundam. Issled., No. 8-2, 204–206 (2013).

    Google Scholar 

  8. V. S. Ipatov and L. A. Kirikova, Phytocenology (St. Petersburg State Univ., St. Petersburg, 1997) [in Russian].

    Google Scholar 

  9. L. P. Kapel’kina, “Reclamation of disturbed lands in Leningrad oblast,” Reg. Ekol., No. 3-4 (32), 105–110 (2011).

    Google Scholar 

  10. I. O. Kechaikina, A. G. Ryumin, and S. N. Chukov, “Postagrogenic transformation of organic matter in soddy-podzolic soils,” Eurasian Soil Sci. 44, 1077–1089 (2011).

    Article  Google Scholar 

  11. E. D. Lodygin, V. A. Beznosikov, and E. V. Vanchikova, “Functional groups of fulvic acids from gleyic peaty-podzolic soil,” Eurasian Soil Sci. 34, 382–386 (2001).

    Google Scholar 

  12. O. G. Rastvorova, Soil Physics: Manual (Leningrad State Univ., Leningrad, 1983) [in Russian].

    Google Scholar 

  13. N. S. Sekretareva, Vascular Plants of Russian Arctic and Adjacent Areas (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  14. M. V. Semenov, E. V. Stolnikova, N. D. Ananyeva, and K. V. Ivashchenko, “Structure of the microbial community in soil catena of the right bank of the Oka River,” Biol. Bull. 40, 266–274 (2013).

    Article  Google Scholar 

  15. I. Kh. Izbek, “Development and decomposition intensity of the roots in the depth of reclaimed soils,” Pochvovedenie, No. 9, 1132–1136 (1995).

    Google Scholar 

  16. A. B. Umarova, T. V. Beketskaya, and S. V. Zhelezova, “Transformation of physical and chemical properties of the model soils affected by wood vegetation,” Vestn. Orenburg. Gos. Univ., No. 6, 629–632 (2009).

    Google Scholar 

  17. Flora of Leningrad Oblast, Ed. by B. K. Shishkin (Leningrad State Univ., Leningrad, 1955), No. 1.

    Google Scholar 

  18. Flora of Leningrad Oblast, Ed. by B. K. Shishkin (Leningrad State Univ., Leningrad, 1957), No. 2.

    Google Scholar 

  19. Flora of Leningrad Oblast, Ed. by B. K. Shishkin (Leningrad State Univ., Leningrad, 1961), No. 3.

    Google Scholar 

  20. Flora of Leningrad Oblast, Ed. by B. K. Shishkin (Leningrad State Univ., Leningrad, 1965), No. 4.

    Google Scholar 

  21. J. Frouz, X. Li, A. Brune, V. Pizl, and E.V. Abakumov, “Effect of soil invertebrates on the formation of humic substances under laboratory conditions,” Eurasian Soil Sci. 44, 893–896 (2011).

    Article  Google Scholar 

  22. N. N. Tsvelev, Guide for Identification of Vascular Plants of the Northwestern Russia: Leningrad, Pskov, and Novgorod Oblasts (Saint Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  23. S. N. Chukov, Structural and Functional Parameters of Soil Organic Matter under Anthropogenic Impact (St. Petersburg State Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  24. E. V. Abakumov, E. I. Maksimova, A. V. Lagoda, and E. M. Koptseva, “Soil formation in the quarries for limestone and clay production in the Ukhta region,” Eurasian Soil Sci. 44, 380–385 (2001).

    Article  Google Scholar 

  25. E. V. Abakumov, O. Trubetskoj, D. Demin, L. Celi, C. Cerli, and O. Trubetskaya, “Humic acid characteristics in podzol soil chronosequence,” Chem. Ecol. 26, 59–66 (2010).

    Article  Google Scholar 

  26. J. P. E. Anderson and K. H. A. Domsch, “Phisiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 215–221 (1978).

    Article  Google Scholar 

  27. R. Artinger, T. Rabung, J. I. Kim, S. Sachs, K. Schmeide, and K. H. Heise, “Humic colloid-borne migration of uranium in sand columns,” J. Contam. Hydrol. 58 (1–2), 1–12 (2002).

    Article  Google Scholar 

  28. G. Barancikova, N. Senesi, and G. Brunetti, “Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types,” Geoderma 78, 251–266 (1997).

    Article  Google Scholar 

  29. E. Breit-Maier and W. Voellter, 13C NMR Spectroscopy (Verlag Chemmie, Weinheim, 1974).

    Google Scholar 

  30. G. D. Browen and A. D. Rovira, “The rhizosphera and its management to improve plant growth,” Adv. Agron. 66, 1–102 (1999).

    Article  Google Scholar 

  31. B. Chefetz, “Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis-and thermochemolysis-gas chromatography/mass spectrometry,” Soil Sci. Am. J. 66, 1159–1171 (2002).

    Article  Google Scholar 

  32. M. Claussen, V. Brovkin, and A. Ganopolski, “Biogeophysical versus biogeochemical feedbacks of large-scale land cover change,” Geophys. Res. Lett. 28 (6), 1011–1014 (2001).

    Article  Google Scholar 

  33. A. Golchin, J. A. Baldock, P. Clarke, T. Higashi, and J. M. Oades, “The effects of vegetation and burning on the chemical composition of soil organic matter of a volcanic ash soil as shown by 13C NMR spectroscopy. II. Density fractions,” Geoderma 76 (3–4), 175–192 (1997).

    Article  Google Scholar 

  34. P. G. Hatcher, M. Schnitzer, L. W. Dennis, and G. E. Maciel, “Aromaticity of humic substances in soils,” Soil Sci. Soc. Am. J. 45, 1089–1093 (1981).

    Article  Google Scholar 

  35. A. C. Kennedy, “The rhizosphera and spermosphera,” in Principles and Applications of Soil Microbiology (Prentice Hall, New Jersey, 1998), pp. 389–407.

    Google Scholar 

  36. H. R. Kleb and S. D. Wilson, “Vegetation effects on soil resource heterogeneity in prairie and forest,” Am. Nat. 150 (3), 283–298 (1997).

    Article  Google Scholar 

  37. B. Kříbek, M. Strnad, Z. Boháček, et al., “Geochemistry of Miocene lacustrine sediments from the Sokolov Coal Basin (Czech Republic),” Int. J. Coal Geol. 37, 207–233 (1998).

    Article  Google Scholar 

  38. J. Lichter, “Primary succession and forest development on coastal Lake Michigan sand dunes,” Ecol. Monogr. 68, 487–510 (1998).

    Google Scholar 

  39. R. B. Newman and K. R. Tate, “Soil phosphorus characterization by 31p nuclear magnetic resonance,” Commun. Soil Sci. Plant Anal. 11 (9), 835–842 (1980).

    Article  Google Scholar 

  40. G. Ogner, “The [13C] nuclear magnetic resonance spectrum of a methylated humic acid,” Soil. Biol. Biochem. 11, 105–108 (1979).

    Article  Google Scholar 

  41. M. Patel and S. D. Wilson, “Root dynamics and spatial pattern in prairie and forest,” Ecology 83 (5), 1199–1203 (2002).

    Article  Google Scholar 

  42. K. Řehounková and K. Prach, “Spontaneous vegetation succession in disused gravel-sand pits: role of local site and landscape factors,” J. Veg. Sci. 17, 493–500 (2006).

    Google Scholar 

  43. A. D. Rovira, “Plant root exudates,” Bot. Rev. 35 (1), 35–37 (1969).

    Article  Google Scholar 

  44. A. G. van der Valk, “Establishment, colonization, and persistence,” in Plant Succession—Theory and Prediction (Chapman and Hall, London, 1992).

    Google Scholar 

  45. F. Vila, J. Lentz, and H. Ludemann, “FT-C13 nuclear magnetic resonance spectra of natural humic substances,” Biochem. Biophys. Res. Commun. 72, 1063–1070 (1972).

    Article  Google Scholar 

  46. E. A. Webster, J. A. Chudek, and D. W. Hopkins, “Carbon transformations during decomposition of different components of plant leaves in soil,” Soil Biol. Biochem. 32, 301–314 (2000).

    Article  Google Scholar 

  47. M. A. Wilson, “Applications of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter,” J. Soil Sci. 32, 167–186 (1981).

    Article  Google Scholar 

  48. S. D. Wilson and H. R. Kleb, “The influence of prairie and forest vegetation on soil moisture and available nitrogen,” Am. Midl. Nat. 136 (2), 222–231 (1996).

    Article  Google Scholar 

  49. W. Zech, M.-B. Johansson, L. Haumaier, and R. L. Malcolm, “CPMAS 13C NMR and IR spectra of spruce and pine litter and of the Klason lignin fraction at different stages of decomposition,” J. Plant Nutr. Soil Sci. 150, 262–265 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Dmitrakova.

Additional information

Original Russian Text © Ya.A. Dmitrakova, E.V. Abakumov, 2018, published in Pochvovedenie, 2018, No. 5, pp. 630–640.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrakova, Y.A., Abakumov, E.V. Restoration of Soils and Vegetation on Reclamation Sites of the Kingisepp Phosphorite Field. Eurasian Soil Sc. 51, 588–597 (2018). https://doi.org/10.1134/S1064229318050022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318050022

Keywords

Navigation