Skip to main content
Log in

Effect of humic acids on the metabolism of Chlorella vulgaris in a model experiment

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of humic acids (HAs) on physiological processes (photosynthesis, respiration, and abundance) of green microalga Chlorella vulgaris has been studied, and the relationships between the physiological activity of HAs and their structural parameters have been investigated. It has been found that the optimum range of HA concentrations for the growth of C. vulgaris is 0.01–0.03%. In this range, the highest positive effect on total photosynthesis increment is due to hydrophilic HA preparations from fallow soddypodzolic soil (Albic Retisol) and virgin gray soil (Luvic Greyzemic Phaeozem). The minimum stimulation of respiration is noted for all HA preparations in the region of the maximum photosynthesis stimulation. At concentrations above 0.003%, all HA preparations have a negative effect: the rate of photosynthesis in C. vulgaris cells decreases, and their respiration is strongly enhanced. The abundance of C. vulgaris under the effect of all of the studied preparations under illumination increases more rapidly than in the dark. A high positive coefficient of correlation is found between the hydrophilicity of HAs calculated from 13C NMR data and the photosynthesis rate in C. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Vinberg, “Quantitative analysis of food consumption and assimilation by aquatic animals,” Zh. Obshch. Biol. 25 (4), 254–266 (1964).

    Google Scholar 

  2. L. A. Gaisina, A. I. Fazlutdinova, and R. R. Kabirov, Practical Manual on Isolation and Cultivation of Algae (Bashkir State Pedagogical Univ., Ufa, 2008) [in Russian].

    Google Scholar 

  3. A. I. Gorovaya, D. S. Orlov, and O. V. Shcherbenko, Humic Substances: Structure, Functions, Mechanism, Protector, Properties, and Ecological Role (Naukova Dumka, Kiev, 1995) [in Russian].

    Google Scholar 

  4. V. V. Demin, V. A. Terent’ev, Yu. A. Zavgorodnyaya, and M. V. Biryukov, “Probable mechanism of the action of humic substances on living cells,” in Humic Substances in Biosphere (Moscow, 2004), pp. 37–40.

    Google Scholar 

  5. I. N. Donskikh, K. E. Stekol’nikov, N. G. Myazin, and Avad Raed Avad, “Elemental composition of humic acids in leached chernozem after long-term application of different fertilization systems in the central chernozemic region of the Russian Federation,” Izv. S.-Peterb. Gos. Agrar. Univ., No. 18, 48–52 (2010).

    Google Scholar 

  6. I. O. Kechaikina, A. G. Ryumin, and S. N. Chukov, “Postagrogenic transformation of organic matter in soddy-podzolic soils,” Eurasian Soil Sci. 44, 1077–1089 (2011).

    Article  Google Scholar 

  7. I. D. Komissarov and A. A. Klimova, “Influence of humic acids on photosynthesis and respiration of plants,” in Humic Preparations (Tyumen State Agricultural Inst., Tyumen, 1971), Vol.14.

  8. N. A. Kulikova, Doctoral Dissertation in Biology (Moscow, 2008).

    Google Scholar 

  9. D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  10. I. V. Perminova, Doctoral Dissertation in Chemistry (Moscow, 2000).

    Google Scholar 

  11. S. E. Plekhanov, Doctoral Dissertation in Biology (Moscow, 1999).

    Google Scholar 

  12. L. A. Khristeva, “Stimulation of the plant growth by humic acid,” in Humic Fertilizers: Theory and Practical Use (Kharkov State Univ., Kharkov, 1957), pp. 73–79.

    Google Scholar 

  13. S. N. Chukov, M. S. Golubkov, and A. G. Ryumin, “Intrahorizon differentiation of the structural-functional parameters of the humic acids from a typical chernozem,” Eurasian Soil Sci. 43, 1255–1262 (2010).

    Article  Google Scholar 

  14. S. N. Chukov, V. D. Talashkina, and M. A. Nadporozhskaya, “Physiological activity of growth stimulators and soil humic acids,” Pochvovedenie, No. 2, 169–174 (1995).

    Google Scholar 

  15. O. S. Yakimenko and V. A. Terekhova, “Humic preparations and the assessment of their biological activity for certification purposes,” Eurasian Soil Sci. 44, 1222–1230 (2011).

    Article  Google Scholar 

  16. K. Jindo, K. Suto, K. Matsumoto, C. García, T. Sonoki, and M. A. Sanchez-Monedero, “Chemical and biochemical characterization of biochar-blended composts prepared from poultry manure,” Biores. Technol. 110, 396–404 (2012).

    Article  Google Scholar 

  17. L. P. Canellas, P. Luciano, F. Olivares, N. Aguiara, D. L. Jones, A. Nebbioso, P. Mazzeic, and A. Piccolo, “Humic and fulvic acids as biostimulants in horticulture,” Sci. Hortic. 196, 15–27 (2015).

    Article  Google Scholar 

  18. L. P. Canellas, L. R. L. Tixeira Jr., L. B. Dobbss, C. A. Silva, L. O. Medici, D. B. Zandonadi, and A. R. Façanha, “Humic acids cross-interactions with root and organic acids,” Ann. Appl. Biol. 153, 157–166 (2008).

    Google Scholar 

  19. L. P. Canellas, D. J. Dantas, N. O. Aguiar, L. E. P. Peres, A. Zsögön, F. L. Olivares, L. B. Bobbss, A. R. Façanha, A. Nebbioso, and A. Piccolo, “Probing the hormonal activity of fractionate molecular humic components in tomato auxin mutants,” Ann. Appl. Biol. 157, 202–211 (2011).

    Article  Google Scholar 

  20. L. P. Canellas, A. Piccolo, L. B. Dobbss, R. Spaccini, F. L. Olivares, D. B. Zandonadi, and A. R. Façanha, “Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid,” Chemosphere 78, 457–466 (2010).

    Article  Google Scholar 

  21. L. P. Canellas and F. L. Olivares, “Physiological responses to humic substances as plant growth promoter,” Chem. Biol. Technol. Agric. 1 (1), 1–11 (2014).

    Article  Google Scholar 

  22. L. P. Canellas, F. L. Olivares, N. O. Aguiara, D. L. Jones, A. Nebbioso, P. Mazzei, and A. Piccolo, “Humic and fulvic acids as biostimulants in horticulture,” Sci. Hortic. 196, 15–27 (2015).

    Article  Google Scholar 

  23. L. B. Dobbss, L. P. Canellas, F. L. Olivares, N. O. Aguiar, L. E. P. Pers, M. Azevedo, R. Spaccini, A. Piccolo, and A. R. Facanha, “Bioactivity of chemically transformed humic matter from vermicompost on plant root growth,” J. Agric. Food Chem. 58, 3681–3688 (2010).

    Article  Google Scholar 

  24. H. L. Golterman, New Zealand Lakes, Ed. by V. H. Jolly and J. M. A. Brown (Oxford University Press, London, 1975).

  25. A. Muscolo, M. Sidari, and S. Nardi, “Humic substance: relationship between structure and activity. Deeper information suggests univocal findings,” J. Geochem. Explor. 129, 57–63 (2013).

    Article  Google Scholar 

  26. A. Muscolo, S. Cultrupi, and S. Nardi, “IAA detection in humic substances,” Soil Biol. Biochem. 30, 1199–1201 (1998).

    Article  Google Scholar 

  27. S. Nardi, P. Carletti, D. Pizzeghello, and A. Muscolo, Biological Activities of Humic Substances. Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, Vol. 2, Part 1: Fundamentals and Impact of Mineral-Organic Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM), Ed. by N. Senesi, B. Xing, and P. M. Huang (Wiley, Hoboken, NJ, 2009), pp. 305–340.

  28. S. Nardi, G. Concheri, D. Pizzeghello, A. Sturaro, R. Rella, and G. Parvoli, “Soil organic matter mobilization by root exudates,” Chemosphere 41, 653–658 (2000).

    Article  Google Scholar 

  29. C. Riva, V. Orzi, M. Carozzi, M. Acutis, G. Boccasile, S. Lonati, F. Tambone, G. D’Imporzano, and F. Adani, “Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: agronomic performance, odours, and ammonia emission impacts,” Sci. Total Environ. 547, 206–214 (2016).

    Article  Google Scholar 

  30. B. Scaglia, R. R. Nunes, M. Olímpia, O. Rezende, F. Tambone, and F. Adani, “Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost,” Sci. Total Environ. 562, 289–295 (2016).

    Article  Google Scholar 

  31. M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore, “Persistence of soil organic matter as an ecosystem property,” Nature 478, 49–56 (2011).

    Article  Google Scholar 

  32. R. Spaccini, J. S. C. Mbagwu, P. Conte, and A. Piccolo, “Changes of humic substances characteristics from forested to cultivated soils in Ethiopia,” Geoderma 132, 9–19 (2006).

    Article  Google Scholar 

  33. S. Trevisan, D. Pizzeghello, B. Ruperti, O. Francioso, A. Sassi, K. Palme, S. Quaggiotti, and S. Nardi, “Humic substances induce lateral root formation and the expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis,” Plant Biol. 12 (4), 604–614 (2010).

    Google Scholar 

  34. S. Trevisan, D. Pizzeghello, B. Ruperti, O. Francios, A. Sassi, K. Palme, S. Quaggiotti, and S. Nardi, “Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis,” Plant Biol. 12, 604–614 (2009).

    Google Scholar 

  35. S. Trevisan, A. Botton, S. Vaccaro, A. Vezzaro, S. Quaggiotti, and S. Nardi, “Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development,” Environ. Exp. Bot. 74, 45–55 (2011).

    Article  Google Scholar 

  36. S. Vaccaro, A. Ertani, A. Nebbioso, A. Muscolo, S. Quaggiotti, A. Piccolo, and S. Nardi, “Humic substances stimulate maize nitrogen assimilation and amino acid metabolism at physiological and molecular level,” Chem. Biol. Technol. Agric. 2 (5), 1–12 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Chukov.

Additional information

Original Russian Text © M.A. Toropkina, A.G. Ryumin, I.O. Kechaikina, S.N. Chukov, 2017, published in Pochvovedenie, 2017, No. 11, pp. 1336–1343.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropkina, M.A., Ryumin, A.G., Kechaikina, I.O. et al. Effect of humic acids on the metabolism of Chlorella vulgaris in a model experiment. Eurasian Soil Sc. 50, 1294–1300 (2017). https://doi.org/10.1134/S1064229317110126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317110126

Keywords

Navigation