Skip to main content
Log in

Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission

  • Degradation, Remediation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The 23-year-long dynamics of actual acidity (pHwater) and acid-soluble heavy metals (Cu, Pb, Cd, Zn) in the forest litter and humus horizon of soils in spruce-fir forests were studied in the area subjected to the long-term (since 1940) pollution with atmospheric emissions from the Middle Ural Copper Smelter (Revda, Sverdlovsk oblast). For this purpose, 25 permanent sample plots were established on lower slopes at different distances from the enterprise (30, 7, 4, 2, and 1 km; 5 plots at each distance) in 1989. The emissions from the smelter have decreased since the early 1990s. In 2012, the emissions of sulfur dioxide and dust decreased by 100 and 40 times, respectively, as compared with the emissions in 1980. Samples of litter and humus horizons were collected on permanent plots in 1989, 1999, and 2012. The results indicate that the pH of the litter and humus horizons restored to the background level 10 and 23 years after the beginning of the reduction in emissions, respectively. However, these characteristics in the impact zone still somewhat differ from those in the background area. In 2012, the content of Cu in the litter decreased compared to 1989 on all the plots; the content of Cu in the humus horizon decreased only in the close vicinity of the smelter. The contents of other metals in the litter and humus horizons remain constant or increased (probably because of the pH-dependent decrease in migration capacity). The absence of pronounced removal of metals from soils results in the retention of high contamination risk and the conservation of the suppressed state of biota within the impact zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Vodyanitskii, “Transformations of arsenic in contaminated soils,” Agrokhimiya, No. 4, 87–96 (2013).

    Google Scholar 

  2. Yu. N. Vodyanitskii, I. O. Plekhanova, E. V. Prokopovich, and A. T. Savichev, “Soil contamination with emissions of non-ferrous metallurgical plants,” Eurasian Soil Sci. 44, 217–226 (2011).

    Article  Google Scholar 

  3. Yu. N. Vodyanitskii and A. S. Yakovlev, “Assessment of soil contamination by the content of heavy metals in the soil profile,” Eurasian Soil Sci. 44, 297–303 (2011).

    Article  Google Scholar 

  4. E. L. Vorobeichik, “Changes in the rate of cellulose decomposition under technogenic impact,” Ekologiya, No. 6, 73–76 (1991).

    Google Scholar 

  5. E. L. Vorobeichik, “Changes in thickness of forest litter under chemical pollution,” Russ. J. Ecol. 26, 252–258 (1995).

    Google Scholar 

  6. E. L. Vorobeichik, Doctoral Dissertation in Biology (Yekaterinburg, 2004).

    Google Scholar 

  7. E. L. Vorobeichik, “Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution,” Russ. J. Ecol. 38, 398–407 (2007).

    Article  Google Scholar 

  8. E. L. Vorobeichik, A. I. Ermakov, M. P. Zolotarev, and T. K. Tuneva, “Changes in diversity of soil macrofauna in industrial pollution gradient,” Russ. Entomol. J. 21 (2), 203–218 (2012).

    Google Scholar 

  9. E. L. Vorobeichik and M. V. Kozlov, “Impact of point polluters on terrestrial ecosystems: methodology of research, experimental design, and typical errors,” Russ. J. Ecol. 43, 89–96 (2012).

    Article  Google Scholar 

  10. E. L. Vorobeichik and D. V. Nesterkova, “Technogenic boundary of the mole distribution in the region of copper smelter impacts: shift after reduction of emissions,” Russ. J. Ecol. 46, 377–380 (2015). doi 10.1134/ S1067413615040165

    Article  Google Scholar 

  11. E. L. Vorobeichik and P. G. Pishchulin, “Industrial pollution reduces the effect of trees on forming the patterns of heavy metal concentration fields in forest litter,” Russ. J. Ecol. 47, 431–441 (2016). doi 10.1134/ S1067413616050155

    Article  Google Scholar 

  12. E. L. Vorobeichik and V. N. Pozolotina, “Microscale spatial variation in forest litter phytotoxicity,” Russ. J. Ecol. 34, 381–388 (2003).

    Article  Google Scholar 

  13. E. L. Vorobeichik, M. R. Trubina, E. V. Khantemirova, and I. E. Bergman, “Long-term dynamic of forest vegetation after reduction of copper smelter emissions,” Russ. J. Ecol. 45, 498–507 (2014). doi 10.1134/ S1067413614060150

    Article  Google Scholar 

  14. F. G. Gafurov, Soils of Sverdlovsk Oblast (Ural State Univ., Yekaterinburg, 2008) [in Russian].

    Google Scholar 

  15. G. A. Evdokimova, G. V. Kalabin, and N. P. Mozgova, “Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise,” Eurasian Soil Sci. 44, 237–244 (2011).

    Article  Google Scholar 

  16. G. A. Evdokimova and N. P. Mozgova, “The impact of emissions from the nonferrous metallurgical plant on soil in a model experiment,” Eurasian Soil Sci. 33, 552–559 (2000).

    Google Scholar 

  17. G. A. Evdokimova, N. P. Mozgova, and M. V. Korneikova, “The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel Plant,” Eurasian Soil Sci. 47, 504–510 (2014). doi 10.1134/S1064229314050044

    Article  Google Scholar 

  18. V. E. Zverev, “Mortality and recruitment of mountain birch (Betula pubescens ssp. czerepanovii) in the impact zone of a copper-nickel smelter in the period of significant reduction of emissions: the results of 15-year monitoring,” Russ. J. Ecol. 40, 254–260 (2009).

    Article  Google Scholar 

  19. S. Yu. Kaigorodova and E. L. Vorobeichik, “Changes in certain properties of grey forest soil polluted with emissions from a copper-smelting plant,” Russ. J. Ecol. 27, 177–183 (1996).

    Google Scholar 

  20. S. Yu. Kaigorodova and Yu. G. Smirnov, “Duration of the existence of a technogenic geochemical anomaly in the impact zone of the copper smelter in the Middle Urals,” Proceedings of the III International Scientific Conference “Modern Problems of Soil Pollution” (Moscow, 2007), pp. 92–96.

    Google Scholar 

  21. G. V. Kalabin and T. I. Moiseenko, “Ecodynamics of anthropogenic mining provinces: from degradation to rehabilitation,” Dokl. Earth Sci. 437, 432–436 (2011).

    Article  Google Scholar 

  22. V. G. Kapustin, “Physical-geographic zonation of Sverdlovsk oblast,” Proceedings of Conference “Geography and Modern Problems in Nature Science” (Yekaterinburg, 2009), pp. 11–24.

    Google Scholar 

  23. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  24. I. N. Korkina and E. L. Vorobeichik, “The humus index: a promising tool for environmental monitoring,” Russ. J. Ecol. 47, 526–531 (2016). doi 10.1134/ S1067413616060084

    Article  Google Scholar 

  25. I. V. Lyanguzova, D. K. Goldvirt, and I. K. Fadeeva, “Spatiotemporal dynamics of the pollution of Al–Fehumus podzols in the impact zone of a nonferrous metallurgical plant,” Eurasian Soil Sci. 49, 1189–1203 (2016). doi 10.1134/S1064229316100094

    Article  Google Scholar 

  26. I. V. Lyanguzova and E. A. Maznaya, “Dynamic trends in Vaccinium myrtillus L. cenopopulations in the zone affected by a copper-nickel smelter complex: results of 20-year monitoring,” Russ. J. Ecol. 43, 281–288 (2012).

    Article  Google Scholar 

  27. A. I. Obukhov and A. A. Popova, “Seasonal dynamics and spatial variation of heavy metals in soils and ground waters,” Pochvovedenie, No. 9, 42–51 (1992).

    Google Scholar 

  28. E. V. Prokopovich and S. Yu. Kaigorodova, “Changes in the humus state of soils affected by emissions from the Sredneural’skii Copper-Smelting Plant,” Russ. J. Ecol. 30, 344–347 (1999).

    Google Scholar 

  29. SanPiN 4266-87: Methodological Recommendations for Evaluation of Soil Pollution by Chemical Substances (Ministry of Public Health of the Soviet Union, Moscow, 1987) [in Russian].

  30. SP 11-102-97: Engineering-Ecological Surveys for Construction Industry: The Rules (Gosstroi Rossii, Moscow, 1997) [in Russian].

  31. A. V. Tanasevich, L. B. Rybalov, and I. O. Kamaev, “Dynamics of soil macrofauna in the zone affected by technogenic pollution,” Lesovedenie, No. 6, 63–72 (2009).

    Google Scholar 

  32. V. O. Targulian and I. A. Sokolov, “Structural and functional approach to soils: soil-memory and soilmoment,” in Mathematical Modeling in Ecology (Nauka, Moscow, 1978), pp. 17–33.

    Google Scholar 

  33. M. R. Trubina and E. L. Vorobeichik, “Content of heavy metals in the medical plants in the impact zone of the Middle Ural Copper Smelter,” Rastit. Resur. 49 (2), 203–222 (2013).

    Google Scholar 

  34. M. R. Trubina, E. L. Vorobeichik, E. V. Khantemirova, I. E. Bergman, and S. Yu. Kaigorodova, “Dynamics of forest vegetation after the reduction of industrial emissions: fast recovery or continued degradation?” Dokl. Biol. Sci. 458, 302–305 (2014). doi 10.1134/S0012496614050135

    Article  Google Scholar 

  35. M. R. Trubina, S. V. Mukhacheva, V. S. Bezel’, and E. L. Vorobeichik, “Content of heavy metals in the wild berries in the zone of air pollution by the Middle Ural Copper Smelter (Sverdlovsk oblast),” Rastit. Resur. 50 (1), 67–83 (2014).

    Google Scholar 

  36. V. P. Firsova, Forest Soils of Sverdlovsk Oblast and Their Transformation Caused by Forest Economic Activities (Ural Branch, Academy of Sciences of Soviet Union, Sverdlovsk, 1969) [in Russian].

    Google Scholar 

  37. T. V. Chernenkova and Yu. N. Bochkarev, “Dynamics of spruce plantations of the Kola North under the impact of natural and anthropogenic factors,” Zh. Obshch. Biol. 74 (4), 283–303 (2013).

    Google Scholar 

  38. T. V. Chernenkova, R.R. Kabirov, and E.V. Basova, “Restoration successions of northern taiga spruce forests upon the reduction of aerotechnogenic impacts,” Contemp. Probl. Ecol. 4, 742–757 (2011).

    Article  Google Scholar 

  39. T. V. Chernenkova, R. R. Kabirov, E. V. Mekhanikova, A. M. Stepanov, and A. Yu. Gusarova, “Demutation of vegetation after closure of the copper smelter,” Lesovedenie, No. 6, 31–37 (2001).

    Google Scholar 

  40. D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals (Springer-Verlag, New York, 2001).

    Book  Google Scholar 

  41. C. M. Aelion, H. T. Davis, A. B. Lawson, B. Cai, and S. McDermott, “Temporal and spatial variation in residential soil metal concentrations: implications for exposure assessments,” Environ. Pollut. 185, 365–368 (2014). doi 10.1016/j.envpol.2013.10.018

    Article  Google Scholar 

  42. V. Barcan, “Leaching of nickel and copper from soil contaminated by metallurgical dust,” Environ. Int. 28 (1–2), 63–68 (2002).

    Article  Google Scholar 

  43. Å. M. M. Berglund, M. J. Rainio, and T. Eeva, “Temporal trends in metal pollution: Using bird excrement as indicator,” PLoS One 10 (2), 1–13 (2015). doi 10.1371/journal.pone.0117071

    Article  Google Scholar 

  44. R. Carrillo-González, J. Šimunek, S. Sauvé, and D. Adriano, “Mechanisms and pathways of trace element mobility in soils,” Adv. Agron. 91, 111–178 (2006). doi 10.1016/S0065-2113(06)91003-7

    Article  Google Scholar 

  45. R. Clemente, N. M. Dickinson, and N. W. Lepp, “Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity,” Environ. Pollut. 155 (2), 254–261 (2008). doi 10.1016/j.envpol.2007.11.024

    Article  Google Scholar 

  46. A. Dube, R. Zbytniewski, T. Kowalkowski, E. Cukrowska, and B. Buszewski, “Adsorption and migration of heavy metals in soil,” Pol. J. Environ. Stud. 10 (1), 1–10 (2001).

    Google Scholar 

  47. S. Dudka and D. C. Adriano, “Environmental impacts of metal ore mining and processing: a review,” J. Environ. Qual. 26 (3), 590–602 (1997).

    Article  Google Scholar 

  48. T. Eeva and E. Lehikoinen, “Long-term recovery of clutch size and egg shell quality of the pied flycatcher (Ficedula hypoleuca) in a metal polluted area,” Environ. Pollut. 201, 26–33 (2015). doi 10.1016/ j.envpol.2015.02.027

    Article  Google Scholar 

  49. M. Eklund and K. Håkansson, “Distribution of cadmium, copper and zinc emitted from a Swedish copperworks, 1750–1900,” J. Geochem. Explor. 58 (2–3), 291–299 (1997).

    Article  Google Scholar 

  50. G. A. Evdokimova and N. P. Mozgova, “Restoration of properties of cultivated soils polluted by copper and nickel,” J. Environ. Monit. 5 (4), 667–670 (2003). doi 10.1039/b210278c

    Article  Google Scholar 

  51. D. G. Gundermann and T. C. Hutchinson, “Changes in soil chemistry 20 years after the closure of a nickel copper smelter near Sudbury, Ontario, Canada,” J. Geochem. Explor. 52 (1–2), 231–236 (1995).

    Article  Google Scholar 

  52. T. C. Hutchinson and D. Gunderman, “The contamination and recovery of natural ecosystems by smelting and mining activities at Sudbury, Ontario,” in Air Pollution in the Ural Mountains (Springer, Dordrecht, 1998), pp. 363–373.

    Chapter  Google Scholar 

  53. IUSS Working Group WRB, World Reference Base for Soil Resources 2015, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  54. R. Juknys, J. Vencloviene, V. Stravinskiene, A. Augustaitis, and E. Bartkevicius, “Scots pine (Pinus sylvestris L.) growth and condition in a polluted environment: from decline to recovery,” Environ. Pollut. 125 (2), 205–212 (2003).

    Article  Google Scholar 

  55. C. Kabala, T. Chodak, and L. Szerszen, “Influence of land use pattern on changes in copper content in soils around a copper smelter, based on a 34-year monitoring cycle,” Zemes Ukio Mokslai 15 (3), 8–12 (2008).

    Google Scholar 

  56. M. V. Kozlov and E. L. Zvereva, “Industrial barrens: extreme habitats created by non-ferrous metallurgy,” Rev. Environ. Sci. Biotechnol. 6 (1–3), 231–259 (2007).

    Article  Google Scholar 

  57. M. V. Kozlov, E. L. Zvereva, and V. E. Zverev, Impacts of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Contaminated Areas (Springer-Verlag, Dordrecht, 2009).

    Book  Google Scholar 

  58. J. Maskall, K. Whitehead, and I. Thornton, “Heavy metal migration in soils and rocks at historical smelting sites,” Environ. Geochem. Health 17 (3), 127–138 (1995).

    Article  Google Scholar 

  59. M. McBride, S. Sauvé, and W. Hendershot, “Solubility control of Cu, Zn, Cd, and Pb in contaminated soils,” Eur. J. Soil Sci. 48 (2), 337–346 (1997).

    Article  Google Scholar 

  60. M. Meadows and S. A. Watmough, “An assessment of long-term risks of metals in Sudbury: a critical loads approach,” Water, Air, Soil Pollut. 223 (7), 4343–4354 (2012).

    Article  Google Scholar 

  61. H. Niskavaara, C. Reimann, V. Chekushin, and G. Kashulina, “Seasonal variability of total and easily leachable element contents in topsoils (0–5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia),” Environ. Pollut. 96 (2), 261–274 (1997). doi 10.1016/s0269-7491(97)00031-6

    Article  Google Scholar 

  62. K. K. Nkongolo, A. Vaillancourt, S. Dobrzeniecka, M. Mehes, and P. Beckett, “Metal content in soil and black spruce (Picea mariana) trees in the Sudbury region (Ontario, Canada): low concentration of arsenic, cadmium, and nickel detected near smelter sources,” Bull. Environ. Contam. Toxicol. 80 (2), 107–111 (2008).

    Article  Google Scholar 

  63. N. E. I. Nyholm and Å. Rühling, “Effects of decreased atmospheric heavy metal deposition in south Sweden on terrestrial birds and small mammals in natural populations,” Water, Air, Soil Pollut. Focus 1 (3), 439–448 (2001).

    Article  Google Scholar 

  64. L. J. Schram, C. Wagner, R. T. McMullin, and M. Anand, “Lichen communities along a pollution gradient 40 years after decommissioning of a Cu–Ni smelter,” Environ. Sci. Pollut. Res. 22 (12), 9323–9331 (2015). doi 10.1007/s11356-015-4088-4

    Article  Google Scholar 

  65. W. M. Stigliani, P. Doelman, W. Salomons, R. Schulin, G. R. B. Smidt, and S. E. A. T. M. van der Zee, “Chemical time bombs: predicting the unpredictable,” Environment 33 (4), 4–9, 26–30 (1991).

    Google Scholar 

  66. G. Tyler, “Leaching rates of heavy metal ions in forest soil,” Water, Air, Soil Pollut. 9 (2), 137–148 (1978).

    Article  Google Scholar 

  67. K. Winterhalder, “Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area,” Environ. Rev. 4 (3), 185–224 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Vorobeichik.

Additional information

Original Russian Text © E.L. Vorobeichik, S.Yu. Kaigorodova, 2017, published in Pochvovedenie, 2017, No. 8, pp. 1009–1024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobeichik, E.L., Kaigorodova, S.Y. Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission. Eurasian Soil Sc. 50, 977–990 (2017). https://doi.org/10.1134/S1064229317080130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317080130

Keywords

Navigation