Skip to main content
Log in

Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The method of luminescent microscopy has been applied to study the structure of the microbial biomass of soils and soil-like bodies in East (the Thala Hills and Larsemann Hills oases) and West (Cape Burks, Hobbs coast) Antarctica. According to Soil Taxonomy, the studied soils mainly belong to the subgroups of Aquic Haploturbels, Typic Haploturbels, Typic Haplorthels, and Lithic Haplorthels. The major contribution to their microbial biomass belongs to fungi. The highest fungal biomass (up to 790 μg C/g soil) has been found in the soils with surface organic horizons in the form of thin moss/lichen litters, in which the development of fungal mycelium is most active. A larger part of fungal biomass (70–98%) is represented by spores. For the soils without vegetation cover, the accumulation of bacterial and fungal biomass takes place in the horizons under surface desert pavements. In the upper parts of the soils without vegetation cover and in the organic soil horizons, the major part (>60%) of fungal mycelium contains protective melanin pigments. Among bacteria, the high portion (up to 50%) of small filtering forms is observed. A considerable increase (up to 290.2 ± 27 μg C/g soil) in the fungal biomass owing to the development of yeasts has been shown for gley soils (gleyzems) developing from sapropel sediments under subaquatic conditions and for the algal–bacterial mat on the bottom of the lake (920.7 ± 46 μg C/g soil). The production of carbon dioxide by the soils varies from 0.47 to 2.34 μg C–CO2/(g day). The intensity of nitrogen fixation in the studied samples is generally low: from 0.08 to 55.85 ng С2Н4/(g day). The intensity of denitrification varies from 0.09 to 19.28 μg N–N2O/(g day).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Abakumov, Soils of Western Antarctica (St. Petersburg State Univ., St. Petersburg, 2011) [in Russian].

    Google Scholar 

  2. D. Yu. Vlasov, M. S. Zelenskaya, I. Yu. Kirtsideli, E. V. Abakumov, V. A. Krylenkov, and V. V. Lukin, “Fungi on natural and anthropogenic substrates in Western Antarctica,” Mikol. Fitopatol. 46 (1), 20–26 (2012).

    Google Scholar 

  3. A. V. Golovchenko, N. G. Dobrovol’skaya, and L. I. Inisheva, “Structure and stocks of microbial biomass in oligotrophic peat bogs of the southern taiga in Western Siberia,” Eurasian Soil Sci. 44, 1296–1301 (2002).

    Google Scholar 

  4. S. V. Goryachkin, D. A. Gilichinskii, E. V. Abakumov, E. P. Zazovskaya, N. S. Mergelov, and D. G. Fedorov-Davydov, “Soils of Antarctic: diversity, geography, and genesis (according to the study in the regions of Russian stations), diversity of permafrost and seasonally freezing soils and their role in ecosystems,” Proceedings of the V International Conf. on Cryopedology (Moscow, 2009) [in Russian].

    Google Scholar 

  5. T. G. Dobrovol’skaya, A. V. Golovchenko, D. G. Zvyagintsev, et al., Functions of Microbial Complexes of the High-Moor Peatbogs: Reasons for Slow Peat Destruction, Ed. by I. Yu. Chernov (KMK, Moscow, 2013), pp. 8–9.

  6. S. V. Egorova, V. A. Lavrova, A. A. Petrov-Spiridonov, and T. A. Kalininskaya, “Biological fixation of nitrogen in forest biogeocenoses,” in Nitrogen Fixation in Forest Biogeocenoses (Nauka, Moscow, 1987), pp. 5–43.

    Google Scholar 

  7. A. G. Kudinova, L. V. Lysak, V. S. Soina, N. S. Mergelov, A. V. Dolgikh, and I. G. Shorkunov, “Bacterial communities in the soils of cryptogamic barrens of East Antarctica (the Larsemann Hills and Thala Hills oases),” Eurasian Soil Sci. 44, 276–287 (2015).

    Article  Google Scholar 

  8. A. V. Lupachev and E. V. Abakumov, “Soils of Marie Byrd Land, West Antarctica,” Eurasian Soil Sci. 44, 994–1006 (2013).

    Article  Google Scholar 

  9. L. V. Lysak, E. V. Lapygina, I. A. Konova, and D. G. Zvyagintsev, “Population density and taxonomic composition of bacterial nanoforms in soils of Russia,” Eurasian Soil Sci. 44, 765–770 (2010).

    Article  Google Scholar 

  10. O. E. Marfenina, Anthropogenic Ecology of Soil Fungi (Meditsina dlya Vsekh, Moscow, 2005) [in Russian].

    Google Scholar 

  11. O. E. Marfenina, D. A. Nikitin, and A. E. Ivanova, “The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya stations),” Eurasian Soil Sci. 44, 934–941 (2016).

    Article  Google Scholar 

  12. Practical Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].

  13. N. S. Mergelov, “Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land, East Antarctica),” Eurasian Soil Sci. 44, 845–862 (2014).

    Article  Google Scholar 

  14. L. M. Polyanskaya and D. G. Zvyagintsev, “The content and composition of microbial biomass as an index of the ecological status of soil,” Eurasian Soil Sci. 44, 625–633 (2005).

    Google Scholar 

  15. M. V. Semenov, N. A. Manucharova, and A. L. Stepanov, “Distribution of metabolically active prokaryotes (Archaea and Bacteria) throughout the profiles of chernozem and brown semidesert soil,” Eurasian Soil Sci. 44, 217–225 (2016).

    Article  Google Scholar 

  16. A. L. Stepanov, Microbial Transformation of the Greenhouse Gases in Soils (GEOS, Moscow, 2011) [in Russian].

    Google Scholar 

  17. A. L. Stepanov and L. V. Lysak, Use of Gas Chromatography in Soil Microbiology (MAKS Press, Moscow, 2003) [in Russian].

    Google Scholar 

  18. O. A. Fomicheva, L. M. Polyanskaya, V. V. Nikonov, N. V. Lukina, M. A. Orlova, L. G. Isaeva, and D. G. Zvyagintsev, “Population and biomass of soil microorganisms in old-growth primary spruce forests in the Northern Taiga,” Eurasian Soil Sci. 44, 1323–1331 (2006).

    Article  Google Scholar 

  19. N. D. Ananyeva, S. Castaldib, E. V. Stolnikova, V. N. Kudeyarova, and R. Valentini, “Fungi-to-bacteria ratio in soils of European Russia,” Arch. Agron. Soil Sci. 61 (4), 427–446 (2014).

    Article  Google Scholar 

  20. B. E. Arenz, B. W. Held, J. A. Jurgens, and R. A. Blanchette, “Fungal colonization of exotic substrates in Antarctica,” Fungal Diversity 49 (1), 13–22 (2011).

    Article  Google Scholar 

  21. B. A. Ball and R. A. Virginia, “Microbial biomass and respiration responses to nitrogen fertilization in a polar desert,” Polar Biol. 37 (4), 573–585 (2014).

    Article  Google Scholar 

  22. J. Bloem, P. R. Bolhuis, M. R. Veninga, and J. Wieringa, “Microscopic methods for counting bacteria and fungi in soil,” in Methods in Applied Soil Microbiology and Biochemistry, Ed. by K. Alef and P. Nannipieri (Academic, London, 1995), pp. 162–173.

    Google Scholar 

  23. M. Bolter, “Distribution of bacterial numbers and biomass in soils and on plants from King George Island (Arctowski Station, Maritime Antarctica),” Polar Biol. 15 (2), 115–124 (1995).

    Article  Google Scholar 

  24. Y. Chan, D. C. Lacap, M. C. Lau, K. Y. Ha, K. A. Warren- Rhodes, C. S. Cockell, D. A. Cowan, C. P. McKay, and S. B. Pointing, “Hypolithic microbial communities: between a rock and a hard place,” Environ. Microbiol. 14 (9), 2272–2282 (2012).

    Article  Google Scholar 

  25. D. A. Cowan, Antarctic Terrestrial Microbiology Physical and Biological Properties of Antarctic Soils (Springer-Verlag, New York, 2014), pp. 163–179.

    Book  Google Scholar 

  26. A. V. Dolgikh, N. S. Mergelov, A. A. Abramov, A. V. Lupachev, and S. V. Goryachkin, “Soils of Enderby Land,” in The Soils of Antarctica (Springer-Verlag, New York, 2015), pp. 45–63.

    Chapter  Google Scholar 

  27. E. G. Gregorich, D. W. Hopkins, B. Elberling, et al., “Emission of CO2, CH4, and N2O from lakeshore soils in an Antarctic dry valley,” Soil Biol. Biochem. 38 (10), 3120–3129 (2006).

    Article  Google Scholar 

  28. D. W. Hopkins, A. D. Sparrow, B. Elberling, et al., “Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley,” Soil Biol. Biochem. 38 (10), 3130–3140 (2006).

    Article  Google Scholar 

  29. G. A. Kochkina, S. M. Ozerskaya, N. E. Ivanushkina, N. I. Chigineva, O. V. Vasilenko, E. V. Spirina, and D. A. Gilichinsky, “Fungal diversity in the Antarctic active layer,” Microbiology (Moscow) 44, 94–101 (2014).

    Article  Google Scholar 

  30. S. Liua, B. Maimaitiailib, R. G. Joergensenc, and G. Feng, “Response of soil microorganisms after converting a saline desert to arable land in central Asia,” Appl. Soil Ecol. 44, 1–7 (2016).

    Article  Google Scholar 

  31. N. S. Mergelov, S. V. Goryachkin, I. G. Shorkunov, E. P. Zazovskaya, and A. E. Cherkinsky, “Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica,” Eurasian Soil Sci. 45, 901–917 (2012).

    Article  Google Scholar 

  32. N. S. Mergelov, D. E. Konyushkov, A. V. Lupachev, and S. V. Goryachkin, “Soils of MacRobertson Land,” in The Soils of Antarctica (Springer-Verlag, New York, 2015), pp. 65–86.

    Chapter  Google Scholar 

  33. “Subzero activity of cold-adapted yeasts,” in Cold-Adapted Yeasts, Ed. by N. S. Panikov, P. Buzzini, and R. Margesin (Springer-Verlag, Berlin, 2014), pp. 295-323.

  34. S. B. Pointing and J. Belnap, “Microbial colonization and controls in dryland systems,” Nat. Rev. Microbiol. 10 (8), 551–562 (2012).

    Article  Google Scholar 

  35. N. Schmidt and M. Bolter, “Fungal and bacterial biomass in tundra soils along an arctic transect from Taimyr Peninsula, central Siberia,” Polar Biol. 25 (12), 871–877 (2002).

    Google Scholar 

  36. Soil Survey Staff, Keys to Soil Taxonomy (US Department of Agriculture, Washington, DC, 2010).

    Google Scholar 

  37. K. Sterflinger, D. Tesei, and K. Zakharova, “Fungi in hot and cold deserts with particular reference to microcolonial fungi,” Fungal Ecol. 5 (4), 453–462 (2012).

    Article  Google Scholar 

  38. J. C. F. Tedrow and F. C. Ugolini, “Antarctic soils,” in Antarctic Soils and Soil Forming Processes (Wiley, New York, 1966), pp. 161–177.

    Chapter  Google Scholar 

  39. E. Yergeau, K. K. Newsham, D. A. Pearce, and G. A. Kowalchuk, “Patterns of bacterial diversity across a range of Antarctic terrestrial habitats,” Environ. Microbiol. 9 (11), 2670–2682 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Additional information

Original Russian Text © D.A. Nikitin, O.E. Marfenina, A.G. Kudinova, L.V. Lysak, N.S. Mergelov, A.V. Dolgikh, A.V. Lupachev, 2017, published in Pochvovedenie, 2017, No. 9, pp. 1122–1133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Marfenina, O.E., Kudinova, A.G. et al. Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica. Eurasian Soil Sc. 50, 1086–1097 (2017). https://doi.org/10.1134/S1064229317070079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317070079

Keywords

Navigation