Skip to main content
Log in

Stable carbon compounds in soils: Their origin and functions

  • On the Centennial Anniversary of the Birth of G.V. Dobrovol’skii
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The sources, formation conditions, and composition of stable carbon compounds in soils are considered in this review. It has been shown that the stable carbon compounds contain lithogenic carbon-containing components and pyrogenic material, as well as some stable compounds resulting from the biochemical transformation of biomass in the soil. The presented data indicate that pyrogenic components (black carbon) play the major role in the formation of stable carbon compounds in the soil; in most soils, the products of biomass combustion prevail over the technogenic emissions resulting from the combustion of fossil fuel. Methods for the separation and analysis of stable carbon compounds have been considered; the specificity of markers used for the diagnostics of carbon compounds of different genesis has been discussed. A tentative scheme has been proposed for the classification of carbon compounds in the soil depending on their genesis and stability. The contribution of black carbon to the development of soil morphology and properties has been discussed; the hypothesis about the deciding role of pyrogenic components in the formation of chernozemlike soils in Middle Europe has been challenged. The suitability of biocarbon application to soils for improving their properties and fixing carbon in the soil has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Vinogradova, “Anthropogenic black carbon emissions to the atmosphere: Surface distribution through Russian territory,” Atmos. Ocean. Opt.28(2), 158–164 (2015).

    Article  Google Scholar 

  2. D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and E. V. Yakovleva, “Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils,” Eurasian Soil Sci.41(11), 1180–1188 (2008).

    Article  Google Scholar 

  3. A. N. Gennadiev, Yu. I. Pikovskii, and V. N. Florovskaya, Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils (Moscow State University, Moscow, 1996) [in Russian].

    Google Scholar 

  4. A. N. Gennadiev, Yu. I. Pikovskii, S. S. Chernyanskii, T. A. Alekseeva, and R. G. Kovach, “Forms of polycyclic aromatic hydrocarbons and factors of their accumulations in soils affected by technogenic pollution (Moscow oblast),” Eurasian Soil Sci.37(7), 697–709 (2004).

    Google Scholar 

  5. A. N. Gennadiev and A. S. Tsibart, “Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: factors and features of accumulation,” Eurasian Soil Sci.46(1), 28–36 (2013).

    Article  Google Scholar 

  6. G. V. Dobrovolsky and E. D. Nikitin, Protection of Soils as Valuable Components of the Biosphere (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  7. A. A. Dymov, Yu. A. Dubrovsky, and D. N. Gabov, “Pyrogenic changes in iron-illuvial podzols in the middle taiga of the Komi Republic,” Eurasian Soil Sci.47(2), 47–56 (2014).

    Article  Google Scholar 

  8. F. R. Zaidel’man, “The problem of fire control on drained peatlands and its solution,” Eurasian Soil Sci.44(8), 919–926 (2011).

    Article  Google Scholar 

  9. P. V. Krasil’nikov and A. M. Volodin, “The role of oxidation of sulfides in genesis of the soddy shungite ferruginous soils of Karelia,” Eurasian Soil Sci.29(6), 670–679 (1996).

    Google Scholar 

  10. E. D. Lodygin, V. A. Beznosikov, and R. S. Vasilevich, “Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study),” Eurasian Soil Sci.47(5), 400–406 (2014).

    Article  Google Scholar 

  11. I. A. Morozova and N. M. Golovina, “Assessment of black carbon emission during forest fires,” Okhr. Okruzh. Sredy Prirodopol’z., No. 2, 435–454 (2014).

    Google Scholar 

  12. V. M. Nikolaeva and P. M. Shemyakov, “Pollution of the Arctic by black carbon emissions: general aspects,” Okhr. Okruzh. Sredy Prirodopol’z., No. 4, 20–26 (2013).

    Google Scholar 

  13. D. S. Orlov, Humic Acids of Soils and a General Theory of Humification (Moscow State University, Moscow, 1990) [in Russian].

    Google Scholar 

  14. V. E. Prikhod’ko, Y. I. Cheverdin, and T. V. Titova, “Changes in the organic matter forms in chernozems of the Kamennaya Steppe under different land uses, locations, and hydromorphism degrees,” Eurasian Soil Sci.46(12), 1230–1240 (2013).

    Article  Google Scholar 

  15. I. S. Urusevskaya and G. V. Shekk, “Peculiarities of the type-row soils on shungite rocks in Onega region,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 12–20 (1988).

    Google Scholar 

  16. A. D. Fokin, “Inclusion of organic substances and their decomposition products in the soil humus substances,” Izv. Timiryazev. S-kh. Akad., No. 6, 99–110 (1974).

    Google Scholar 

  17. A. S. Tsibat and A. N. Gennadiev, “Changes of forest soils in the Amur region under the impact of pyrogenesis,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 66–74 (2009).

    Google Scholar 

  18. A. E. Chichibabin, Introduction to Organic Chemistry (Goskhimizdat, Moscow, 1954), Vol. 1. [In Russian]

  19. M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok, “Biochar as a sorbent for contaminant management in soil and water: A review,” Chemosphere 99, 19–23 (2014).

    Article  Google Scholar 

  20. G. Almendros, F. Martin, and F. J. González-Vila, “Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain,” Geoderma42(2), 115–127 (1988).

    Article  Google Scholar 

  21. D. B. Andreeva, K. Leiber, B. Glaser, U. Hambach, M. Erbajeva, G. D. Chimitdorgieva, V. Tashak, and W. Zech, “Genesis and properties of black soils in Buryatia, southeastern Siberia, Russia,” Quat. Int.243(2), 313–326 (2011).

    Article  Google Scholar 

  22. R. Antony, A. M. Grannas, A. S. Willoughby, R. L. Sleighter, M. Thamban, and P. G. Hatcher, “Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet,” Environ. Sci. Technol.48(11), 6151–6159 (2014).

    Article  Google Scholar 

  23. C. J. Atkinson, J. D. Fitzgerald, and N. A. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil337(1), 1–18 (2010).

    Article  Google Scholar 

  24. L. Bobul’ská, S. Bruun, and D. Fazekašová, “Effect of sterilization on mineralization of straw and black carbon,” Fresenius Environ. Bull.22(6), 1727–1730 (2013).

    Google Scholar 

  25. H. P. Boehm, “Some aspects of the surface chemistry of carbon blacks and other carbons,” Carbon32(5), 759–769 (1994).

    Article  Google Scholar 

  26. L. Bornemann, G. Welp, S. Brodowski, A. Rodionov, and W. Amelung, “Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy,” Org. Geochem.39(11), 1537–1544 (2008).

    Article  Google Scholar 

  27. S. Brodowski, W. Amelung, L. Haumaier, C. Abetz, and W. Zech, “Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy,” Geoderma128(1–2), 116–129 (2005).

    Article  Google Scholar 

  28. S. Brodowski, W. Amelung, L. Haumaier, and W. Zech, “Black carbon contribution to stable humus in German arable soils,” Geoderma139(1–2), 220–228 (2007).

    Article  Google Scholar 

  29. G. Caria, D. Arrouays, E. Dubromel, C. Jolivet, C. Ratiè, M. Bernoux, B. G. Barthès, D. Brunet, and C. Grinand, “Black carbon estimation in French calcareous soils using chemo-thermal oxidation method,” Soil Use Manage.27(3), 333–339 (2011).

    Google Scholar 

  30. L. Cécillon, G. Certini, H. Lange, C. Forte, and L. T. Strand, “Spectral fingerprinting of soil organic matter composition,” Org. Geochem. 46, 127–136 (2012).

    Article  Google Scholar 

  31. C.-H. Cheng, J. Lehmann, J. E. Thies, S. D. Burton, and M. H. Engelhard, “Oxidation of black carbon by biotic and abiotic processes,” Org. Geochem.37(11), 1477–1488 (2006).

    Article  Google Scholar 

  32. C.-H. Cheng, J. Lehmann, and M. H. Engelhard, “Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence,” Geochim. Cosmochim. Acta72(6), 1598–1610 (2008).

    Article  Google Scholar 

  33. C.-H. Cheng, J. Lehmann, J. E. Thies, and S. D. Burton, “Stability of black carbon in soils across a climatic gradient,” J. Geophys. Res.: Biogeosci.113(2), (2008). Art. no. G02027.

    Google Scholar 

  34. C.-H. Cheng, T.-P. Lin, J. Lehmann, L.-J. Fang, Y.-W. Yang, O. V. Menyailo, K.-H. Chang, and J.-S. Lai, “Sorption properties for black carbon (wood char) after long term exposure in soils,” Org. Geochem. 70, 53–61 (2014).

    Article  Google Scholar 

  35. G. Cornelissen, Ö. Gustafsson, T. D. Bucheli, M. T. O. Jonker, A. A. Koelmans, and P. C. M. vanNoort, “Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation,” Environ. Sci. Technol.39(18), 6881–6895 (2005).

    Article  Google Scholar 

  36. D. F. Cusack, O. A. Chadwick, W. C. Hockaday, and P. M. Vitousek, “Mineralogical controls on soil black carbon preservation,” Global Biogeochem. Cycles26(2), (2012). Art. no. GB2019.

    Google Scholar 

  37. C. I. Czimczik and C. A. Masiello, “Controls on black carbon storage in soils,” Global Biogeochem. Cycles21(3), (2007). Art. no. GB3005.

    Google Scholar 

  38. C. I. Czimczik, M. W. I. Schmidt, and E.-D. Schulze, “Effects of increasing fire frequency on black carbon and organic matter in podzols of Siberian Scots pine forests,” Eur. J. Soil Sci.56(3), 417–428 (2005).

    Article  Google Scholar 

  39. X. Dai, T. W. Boutton, B. Glaser, R. J. Ansley, and W. Zech, “Black carbon in a temperate mixed-grass savanna,” Soil Biol. Biochem.37(10), 1879–1881 (2005).

    Article  Google Scholar 

  40. A. F. Dickens, Y. Gélinas, C. A. Masiello, S. Wakeham, and J. I. Hedges, “Reburial of fossil organic carbon in marine sediments,” Nature427(6972), 336–339 (2004).

    Article  Google Scholar 

  41. Y. Ding, A. Watanabe, and R. Jaffé, “Dissolved black nitrogen (DBN) in freshwater environments,” Org. Geochem. 68, 1–4 (2014).

    Article  Google Scholar 

  42. B. Durand, “Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen,” in Kerogen: Insoluble Organic Matter from Sedimentary Rocks, Ed. by B. Durand (Paris, 1980), pp. 13–34.

    Google Scholar 

  43. A. A. Dymov and D. N. Gabov, “Pyrogenic alterations of podzols at the North-east European part of Russia: morphology, carbon pools, PAH content,” Geoderma 241–242, 230–237 (2015).

    Article  Google Scholar 

  44. M. Farrell, T. K. Kuhn, L. M. Macdonald, T. M. Maddern, D. V. Murphy, P. A. Hall, B. P. Singh, K. Baumann, E. S. Krull, and J. A. Baldock, “Microbial utilization of biochar-derived carbon,” Sci. Total Environ. 465, 288–297 (2013).

    Article  Google Scholar 

  45. B. Foereid, J. Lehmann, and J. Major, “Modeling black carbon degradation and movement in soil,” Plant Soil345(1), 223–236 (2011).

    Article  Google Scholar 

  46. M. Fowles, “Black carbon sequestration as an alternative to bioenergy,” Biomass Bioenergy31(6), 426–432 (2007).

    Article  Google Scholar 

  47. Y. Gelinas, K. M. Prentice, J. A. Baldock, and J. I. Hedges, “An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils,” Environ. Sci. Technol.35(17), 3519–3525 (2001).

    Article  Google Scholar 

  48. B. Glaser, L. Haumaier, G. Guggenberger, and W. Zech, “Black carbon in soils: the use of benzenecarboxylic acids as specific markers,” Org. Geochem.29(4), 811–819 (1998).

    Article  Google Scholar 

  49. B. Glaser, E. Balashov, L. Haumaier, G. Guggenberger, and W. Zech, “Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region,” Org. Geochem.31(7–8), 669–678 (2000).

    Article  Google Scholar 

  50. B. Glaser and K. H. Knorr, “Isotopic evidence for condensed aromatics from non-pyrogenic sources in soils-implications for current methods for quantifying soil black carbon,” Rapid Commun. Mass Spectrom.22(7), 935–942 (2008).

    Article  Google Scholar 

  51. J. A. González-Pérez, F. J. González-Vila, G. Almendros, and H. Knicker, “The effect of fire on soil organic matter–a review,” Environ. Int.30(6), 855–870 (2004).

    Article  Google Scholar 

  52. A. Grossman and U. Ghosh, “Measurement of activated carbon and other black carbons in sediments,” Chemosphere75(4), 469–475 (2009).

    Article  Google Scholar 

  53. G. Guggenberger, A. Rodionov, O. Shibistova, M. Grabe, O. A. Kasansky, H. Fuchs, N. Mikheyeva, G. Zrazhevskaya, and H. Flessa, “Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia,” Global Change Biol.14(6), 1367–1381 (2008).

    Article  Google Scholar 

  54. Ö. Gustafsson, T. D. Bucheli, Z. Kukulska, M. Andersson, C. Largeau, J.-N. Rouzaud, C. M. Reddy, and T. I. Eglinton, “Evaluation of a protocol for the quantification of black carbon in sediments,” Global Biogeochem. Cycles15(4), 881–890 (2001).

    Article  Google Scholar 

  55. K. Hammes, M. W. I. Schmidt, R. J. Smernik, L. A. Currie, W. P. Ball, T. H. Nguyen, P. Louchouarn, S. Houel, Ö. Gustafsson, M. Elmquist, G. Cornelissen, J. O. Skjemstad, C. A. Masiello, J. Song, P. Peng, et al., “Comparison of quantification methods to measure fire-derived (black-elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere,” Global Biogeochem. Cycles21(3), (2007). Art. no. GB3016.

    Google Scholar 

  56. K. Hammes, M. S. Torn, A. G. Lapenas, and M.W. I. Schmidt, “Centennial black carbon turnover observed in a Russian steppe soil,” Biogeosciences5(5), 1339–1350 (2008).

    Article  Google Scholar 

  57. L. Haumaier and W. Zech, “Black carbon–possible source of highly aromatic components of soil humic acids,” Org. Geochem.23(3), 191–196 (1995).

    Article  Google Scholar 

  58. Y. P. Hsieh and G. C. Bugna, “Analysis of black carbon in sediments and soils using multi-element scanning thermal analysis (MESTA),” Org. Geochem.39(11), 1562–1571 (2008).

    Article  Google Scholar 

  59. M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature409(6821), 695–697 (2001).

    Article  Google Scholar 

  60. D. L. Jones, J. Rousk, G. Edwards-Jones, T. H. DeLuca, and D. V. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45, 113–124 (2012).

    Article  Google Scholar 

  61. J. Kaal, S. Brodowski, J. A. Baldock, K. G. J. Nierop, and A. M. Cortizas, “Characterization of aged black carbon using pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and crosspolarization 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method,” Org. Geochem.39(10), 1415–1426 (2008).

    Article  Google Scholar 

  62. M. Keiluweit, P. S. Nico, M. Johnson, and M. Kleber, “Dynamic molecular structure of plant biomassderived black carbon (biochar),” Environ. Sci. Technol.44(4), 1247–1253 (2010).

    Article  Google Scholar 

  63. L. Klüpfel, M. Keiluweit, M. Kleber, and M. Sander, “Redox properties of plant biomass-derived black carbon (biochar),” Environ. Sci. Technol.48(10), 5601–5611 (2014).

    Article  Google Scholar 

  64. H. Knicker, “How does fire affect the nature and stability of soil organic nitrogen and carbon? A review,” Biogeochemistry85(1), 91–118 (2007).

    Article  Google Scholar 

  65. H. Knicker, A. Hilscher, J. M. de la Rosa, J. A. González-Pérez, and F. J. González-Vila, “Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils,” Geoderma 197–198, 43–50 (2013).

    Article  Google Scholar 

  66. H. Knicker, A. Hilscher, F. J. González-Vila, and G. Almendros, “A new conceptual model for the structural properties of char produced during vegetation fires,” Org. Geochem.39(8), 935–939 (2008).

    Article  Google Scholar 

  67. H. Knicker, P. Müller, and A. Hilscher, “How useful is chemical oxidation with dichromate for the determination of “black carbon” in fire-affected soils?” Geoderma142(1–2), 178–196 (2007).

    Article  Google Scholar 

  68. H. Knicker, M. Wiesmeier, and D. P. Dick, “A simplified method for the quantification of pyrogenic organic matter in grassland soils via chemical oxidation,” Geoderma147(1–2), 69–74 (2008).

    Article  Google Scholar 

  69. A. A. Koelmans, M. T. O. Jonker, G. Cornelissen, T. D. Bucheli, P. C. M. van Noort, and O. Gustafsson, “Black carbon: the reverse of its dark side,” Chemosphere63(3), 365–377 (2006).

    Article  Google Scholar 

  70. A. A. Koelmans, B. Nowack, and M. R. Wiesner, “Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments,” Environ. Pollut.157(4), 1110–1116 (2009).

    Article  Google Scholar 

  71. R. W. Kramer, E. B. Kujawinski, and P. G. Hatcher, “Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry,” Environ. Sci. Technol.38(12), 3387–3395 (2004).

    Article  Google Scholar 

  72. P. V. Krasilnikov, N. A. Makarov, L. I. Skorokhodova, and A. A. Khomichenko, “Soils of ancient and medieval settlements on the shore of Lake Kubenskoe, Vologda oblast,” Eurasian Soil Sci. 37, suppl. 1, 36–39 (2004).

    Google Scholar 

  73. T. A. J. Kuhlbusch and P. J. Crutzen, “Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and source of O2,” Global Biogeochem. Cycles9(4), 491–501 (1995).

    Article  Google Scholar 

  74. Y. Kuzyakov, I. Subbotina, H. Chen, I. Bogomolova, and X. Xu, “Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling,” Soil Biol. Biochem.41(2), 210–219 (2009).

    Article  Google Scholar 

  75. D. A. Laird, M. A. Chappell, D. A. Martens, R. L.Wershaw, and M. Thompson, “Distinguishing black carbon from biogenic humic substances in soil clay fractions,” Geoderma143(1–2), 115–122 (2008).

    Article  Google Scholar 

  76. J. Lehmann, “A handful of carbon,” Nature447(7141), 143–144 (2007).

    Article  Google Scholar 

  77. J. Lehmann, J. P. Da Silva Jr., C. Steiner, T. Nehls, W. Zech, and B. Glaser, “Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments,” Plant Soil49(2), 343–357 (2003).

    Article  Google Scholar 

  78. J. Lehmann, B. Liang, D. Solomon, M. Lerotic, F. Luizão, J. Kinyangi, T. Schäfer, S. Wirick, and C. Jacobsen, “Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles,” Global Biogeochem. Cycles9(1), 1–12 (2005).

    Google Scholar 

  79. J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley, “Biochar effects on soil biota–a review,” Soil Biol. Biochem.43(9), 1812–1836 (2011).

    Article  Google Scholar 

  80. B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J. O. Skjemstad, J. Thies, F. J. Luizão, J. Petersen, and E. G. Neves, “Black carbon increases cation exchange capacity in soils,” Soil Science Society of America J.70(5), 1719–1730 (2006).

    Article  Google Scholar 

  81. B. Liang, J. Lehmann, D. Solomon, S. Sohi, J. E. Thies, J. O. Skjemstad, F. J. Luizão, M. H. Engelhard, E. G. Neves, and S. Wirick, “Stability of biomassderived black carbon in soils,” Geochim. Cosmochim. Acta72(24), 6069–6078 (2008).

    Article  Google Scholar 

  82. B. Liang, J. Lehmann, S. P. Sohi, J. E. Thies, B. O’Neill, L. Trujillo, J. Gaunt, D. Solomon, J. Grossman, E. G. Neves, and F. J. Luizão, “Black carbon affects the cycling of non-black carbon in soil,” Org. Geochem.41(2), 206–213 (2010).

    Article  Google Scholar 

  83. G. Liu, Z. Niu, D. Niekerk, J. Xue, and L. Zheng, “Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology,” Rev. Environ. Contam. Toxicol. 192, 1–28 (2008).

    Google Scholar 

  84. R. Lohmann, J. K. Macfarlane, and P. M. Gschwend, “Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York Harbor sediments,” Environ. Sci. Technol.39(1), 141–148 (2005).

    Article  Google Scholar 

  85. C. Lorz and T. Saile, “Anthropogenic pedogenesis of chernozems in Germany? A critical review,” Quat. Int.243(2), 273–279 (2011).

    Article  Google Scholar 

  86. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “SOM fractionation methods: relevance to functional pools and to stabilization mechanisms,” Soil Biol. Biochem.39(9), 2183–2207 (2007).

    Article  Google Scholar 

  87. L. M. Macdonald, M. Farrell, L. V. Zwieten, and E. S. Krull, “Plant growth responses to biochar addition: an Australian soils perspective,” Biol. Fertil. Soils50(7), 1035–1045 (2014).

    Article  Google Scholar 

  88. J. Major, J. Lehmann, M. Rondon, and C. Goodale, “Fate of soil-applied black carbon: downward migration, leaching and soil respiration,” Global Change Biol.16(4), 1366–1379 (2010).

    Article  Google Scholar 

  89. E. Marín-Spiotta, K. E. Gruley, J. Crawford, E. E. Atkinson, J. R. Miesel, S. Greene, C. CardonaCorrea, and R. G. M. Spencer, “Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries,” Biogeochemistry117(2–3), 279–297 (2014).

    Article  Google Scholar 

  90. B. Marschner, S. Brodowski, A. Dreves, G. Gleixner, A. Gude, P. M. Grootes, U. Hamer, A. Heim, G. Jandl, R. Ji, K. Kaiser, K. Kalbitz, C. Kramer, P. Leinweber, J. Rethemeyer, et al., “How relevant is recalcitrance for the stabilization of organic matter in soils?” J. Plant Nutr. Soil Sci.171(1), 91–110 (2008).

    Article  Google Scholar 

  91. C. A. Masiello, “New directions in black carbon organic geochemistry,” Mar. Chem.92(1–4), 201–213 (2004).

    Article  Google Scholar 

  92. G. Mastrolonardo, O. Francioso, M. Di Foggia, S. Bonora, C. Rumpel, and G. Certini, “Application of thermal and spectroscopic techniques to assess fireinduced changes to soil organic matter in a Mediterranean forest,” J. Geochem. Explor. 143, 174–182 (2014).

    Article  Google Scholar 

  93. C. W. Mueller and I. Köegel-Knabner, “Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites,” Biol. Fertil. Soils45(4), 347–359 (2009).

    Article  Google Scholar 

  94. E. Navarro, A. Baun, R. Behra, N. B. Hartmann, J. Filser, A.-J. Miao, A. Quigg, P. H. Santschi, and L. Sigg, “Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi,” Ecotoxicology17(5), 372–386 (2008).

    Article  Google Scholar 

  95. B. T. Nguyen and J. Lehmann, “Black carbon decomposition under varying water regimes,” Org. Geochem.40(8), 846–853 (2009).

    Article  Google Scholar 

  96. B. T. Nguyen, J. Lehmann, W. C. Hockaday, S. Joseph, and C. A. Masiello, “Temperature sensitivity of black carbon decomposition and oxidation,” Environ. Sci. Technol.44(9), 3324–3331 (2010).

    Article  Google Scholar 

  97. J. J. Pignatello, S. Kwon, and Y. Lu, “Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids,” Environ. Sci. Technol.40(24), 7757–7763 (2006).

    Article  Google Scholar 

  98. D. Pisapia, C. Barrios, M. Martínez, K. Reategui, W. Meléndez, S. Marrero, and M. Escobar “Oxidation of natural graphite in the laboratory and comparison with the synthetic graphite oxide, by means of thermal and spectroscopic techniques,” Rev. Tecn. Fac. Ing. Univ. Zulia32(3), 249–255 (2009).

    Google Scholar 

  99. C. M. Preston and M. W. I. Schmidt, “Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions,” Biogeosciences3(4), 397–420 (2006).

    Article  Google Scholar 

  100. V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nat. Geosci.1(4), 221–227 (2008).

    Article  Google Scholar 

  101. C. N. R. Rao, R. Seshadri, A. Govindaraj, and R. Sen, “Fullerenes, nanotubes, onions and related carbon structures,” Mater. Sci. Eng.: Rep.15(6), 209–262 (1995).

    Article  Google Scholar 

  102. A. Rodionov, W. Amelung, N. Peinemann, L. Haumaier, X. Zhang, M. Kleber, B. Glaser, I. Urusevskaya, and W. Zech, “Black carbon in grassland ecosystems of the world,” Global Biogeochem. Cycles24(3), (2010). Art. no. GB3013.

    Google Scholar 

  103. P. J. Roth, E. Lehndorff, S. Brodowski, L. Bornemann, L. Sanchez-García, Ö. Gustafsson, and W. Amelung, “Differentiation of charcoal, soot and diagenetic carbon in soil: method comparison and perspectives,” Org. Geochem. 46, 66–75 (2012).

    Article  Google Scholar 

  104. C. Rumpel, H. Knicker, I. Kögel-Knabner, J. O. Skjemstad, and R. F. Hüttl, “Types and chemical composition of organic matter in reforested lignite-rich mine soils,” Geoderma86(1–2), 123–142 (1998).

    Article  Google Scholar 

  105. C. Santín, S. H. Doerr, C. Preston, and R. Bryant, “Consumption of residual pyrogenic carbon by wildfire,” Int. J. Wildland Fire22(8), 1072–1077 (2013).

    Article  Google Scholar 

  106. F. Santos, M. P. Fraser, and J. A. Bird, “Atmospheric black carbon deposition and characterization of biomass burning tracers in a northern temperate forest,” Atmos. Environ. 95, 383–390 (2014).

    Article  Google Scholar 

  107. M. W. I. Schmidt, J. O. Skjemstad, E. Gehrt, and I. Kögel-Knabner, “Charred organic carbon in German chernozemic soils,” Eur. J. Soil Sci.50(2), 351–365 (1999).

    Article  Google Scholar 

  108. M. W. I. Schmidt and A. G. Noack, “Black carbon in soils and sediments: analysis, distribution, implications, and current challenges,” Global Biogeochem. Cycles14(3), 777–793 (2000).

    Article  Google Scholar 

  109. M. W. I. Schmidt, J. O. Skjemstad, C. I. Czimczik, B. Glaser, K. M. Prentice, Y. Gelinas, and T. A. J. Kuhl-busch, “Comparative analysis of black carbon in soils,” Global Biogeochem. Cycles15(1), 163–167 (2001).

    Article  Google Scholar 

  110. M. W. I. Schmidt, J. O. Skjemstad, and C. Jäger, “Carbon isotope geochemistry and nanomorphology of soil black carbon: black chernozemic soils in central Europe originate from ancient biomass burning,” Global Biogeochem. Cycles16(4), 701–708 (2002).

    Google Scholar 

  111. M. P. W. Schneider, J. Lehmann, and M. W. I. Schmidt, “Charcoal quality does not change over a century in a tropical agro-ecosystem,” Soil Biol. Biochem.43(9), 1992–1994 (2011).

    Article  Google Scholar 

  112. G. Shrestha, S. J. Traina, and C. W. Swanston, “Black carbon’s properties and role in the environment: a comprehensive review,” Sustainability2(1), 294–320 (2010).

    Article  Google Scholar 

  113. M. J. Simpson and P. G. Hatcher, “Overestimates of black carbon in soils and sediments,” Naturwissenschaften91(9), 436–440 (2004).

    Google Scholar 

  114. J. O. Skjemstad and J. A. Taylor, “Does the WalkleyBlack method determine soil charcoal?” Commun. Soil Sci. Plant Anal.30(15–16), 2299–2310 (1999).

    Article  Google Scholar 

  115. J. O. Skjemstad, J. A. Taylor, and R. J. Smernik, “Estimation of charcoal (char) in soils,” Commun. Soil Sci. Plant Anal.30(15–16), 2283–2298 (1999).

    Article  Google Scholar 

  116. J. Song, P. Peng, and W. Huang, “Black carbon and kerogen in soils and sediments. 1. Quantification and characterization,” Environ. Sci. Technol.36(18), 3960–3967 (2002).

    Article  Google Scholar 

  117. K. A. Spokas, “Review of the stability of biochar in soils: predictability of O: C molar ratios,” Carbon Manage.1(2), 289–303 (2010).

    Article  Google Scholar 

  118. K. A. Spokas, K. B. Cantrell, J. M. Novak, D. W. Archer, J. A. Ippolito, H. P. Collins, A. A. Boateng, I. M. Lima, M. C. Lamb, A. J. McAloon, R. D. Lentz, and K. A. Nichols, “Biochar: a synthesis of its agronomic impact beyond carbon sequestration,” J. Environ. Qual.41(4), 973–989 (2012).

    Article  Google Scholar 

  119. N. A. Vasilyeva, S. Abiven, E. Y. Milanovskiy, M. Hilf, O. V. Rizhkov, and M. W. I. Schmidt, “Pyrogenic carbon quantity and quality unchanged after55years of organic matter depletion in a chernozem,” Soil Biol. Biochem.43(9), 1985–1988 (2011).

    Article  Google Scholar 

  120. Q. Wang, “A review of the environmental behavior and effects of black carbon in soils and sediments,” Acta Ecol. Sin.2(1), 293–310 (2012).

    Article  Google Scholar 

  121. Q. Wang, P.-J. Zhang, M. Liu, and Z.-W. Deng, “Mineral-associated organic carbon and black carbon in restored wetlands,” Soil Biol. Biochem. 75, 300–309 (2014).

    Article  Google Scholar 

  122. T. Whitman, A. Enders, and J. Lehmann, “Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants,” Soil Biol. Biochem. 73, 33–41 (2014).

    Article  Google Scholar 

  123. K. Wiedner, C. Naisse, C. Rumpel, A. Pozzi, P. Wieczorek, and B. Glaser, “Chemical modification of biomass residues during hydrothermal carbonization What makes the difference, temperature or feedstock?” Org. Geochem. 54, 91–100 (2013).

    Article  Google Scholar 

  124. K. Wiedner, C. Rumpel, Steiner C., A. Pozzi, R. Maas, and B. Glaser, “Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agroindustrial biomass on a commercial scale,” Biomass Bioenergy 59, 264–278 (2013).

    Article  Google Scholar 

  125. M. Wolf, E. Lehndorff, M. Mrowald, E. Eckmeier, M. Kehl, M. Frechen, S. Pätzold, and W. Amelung, “Black carbon: fire fingerprints in Pleistocene loesspaleosol archives in Germany,” Org. Geochem. 70, 44–52 (2014).

    Article  Google Scholar 

  126. Y. Yang, B. J. Mahler, P. C. van Metre, B. Ligouis, and C. J. Werth, “Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments,” Geochim. Cosmochim. Acta74(23), 6830–6840 (2010).

    Article  Google Scholar 

  127. D.-M. Zhou, Y.-J. Wang, H.-W. Wang, S.-Q. Wang, and J.-M. Cheng, “Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II),” J. Hazard. Mater.174(1–3), 34–39 (2010).

    Article  Google Scholar 

  128. A. R. Zimmerman, “Abiotic and microbial oxidation of laboratory-produced black carbon (biochar),” Environ. Sci. Technol.44(4), 1295–1301 (2010).

    Article  Google Scholar 

  129. M. Zimmermann, M. I. Bird, C. Wurster, G. Saiz, I. Goodrick, J. Barta, P. Capek, H. Santruckova, and R. Smernik, “Rapid degradation of pyrogenic carbon,” Global Change Biol.8(11), 3306–3316 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Krasilnikov.

Additional information

Original Russian Text © P.V. Krasilnikov, 2015, published in Pochvovedenie, 2015, No. 9, pp. 1131–1144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasilnikov, P.V. Stable carbon compounds in soils: Their origin and functions. Eurasian Soil Sc. 48, 997–1008 (2015). https://doi.org/10.1134/S1064229315090069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315090069

Keywords

Navigation