Skip to main content
Log in

Relationship of methane consumption with the respiration of soil and grass-moss layers in forest ecosystems of the southern taiga in Western Siberia

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The consumption of methane by some soils in the southern taiga of Western Siberia was studied by the static chamber method in the summer of 2013. The median of the specific CH4 flux through the soil was −0.05 mg C/(m2 h) for the entire set of measurements (the negative flux indicates the consumption of methane by the soil). A statistically significant (R 2 = 0.81) linear relationship has been found between the specific CH4 flux to the soil and the total respiration of the soil and the grass-moss layers in the studied forest ecosystems. The quantitative theoretical explanation of this relationship is based on the plant-associated and free methanotrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Glagolev, A. F. Sabrekov, and V. S. Kazantsev, Physical Chemistry and Biology of Peat. Methods to Measure Gas Exchange at the Soil-Atmosphere Interface (Tomsk State Pedagogical University, Tomsk, 2010) [in Russian].

    Google Scholar 

  2. M. V. Glagolev and I. V. Filippov, Inventory of methane consumption by soil,” Dyn. Okruzh. Sredy Global’nye Izmen. Klim. 2(2/4), EDCCrev0002 (2011). http://elibrary.ru/item.asp?id=18248134. Cited May 5, 2014.

    Google Scholar 

  3. E. A. Golovatskaya and E. V. Porokhina, Botany with the Principles of Phytocenology. Biological Productivity of Biogeocenosises (Tomsk State Pedagogical University, Tomsk, 2005) [in Russian].

    Google Scholar 

  4. T. T. Efremova, N. M. Bazhin, I. M. Gadzhiev, S. P. Efremov, and G. A. Makhov, “Specific features of methanogenesis on oligotrophic bogs of Western Siberia and analysis of environmental factors related to correct extrapolation of CH4 fluxes over larger territories,” Sib. Ekol. Zh., No. 6, 563–570 (1998)

    Google Scholar 

  5. E. G. Ivanova, N. V. Doronina, and Yu. A. Trotsenko, “Aerobic methanotrophs as the plant symbionts,” Tr. Inst. Mikrobiol. im. S.N. Vinogradskogo, No. 13, 263–284 (2006).

    Google Scholar 

  6. Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  7. K. Ya. Kondrat’ev and V. F. Krapivin, Modeling of Global Carbon Cycle (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  8. I. K. Kravchenko, S. A. Bykova, L. E. Dulov, V. F. Gal’chenko, V. M. Semenov, T. V. Kuznetsova, D. Pardini, M. Gispert, P. Boeckx, and O. van Cleemput, “Physicochemical and biological factors affecting atmospheric methane oxidation in gray forest soils,” Microbiology (Moscow) 74(2), 216–220 (2005).

    Article  Google Scholar 

  9. L. A. Krivenko, M. V. Glagolev, I. A. Fastovets, B. A. Smolentsov, and Sh. Sh. Maksyukov, “Specific methane flux from southern tundra in Western Siberia,” Din. Okruzh. Sredy Global’nye Izmen. Klim. 4(2/8), (2013).

    Google Scholar 

  10. V. N. Kudeyarov, “The role of soils in the carbon cycle,” Eurasian Soil Sci. 38(8), 808–815 (2005).

    Google Scholar 

  11. A. V. Naumov, “Mires as a source of greenhouse gases in Western Siberia,” in Second International Conference “Emission and Flow of Greenhouse Gases in Northern Eurasia” (Pushchino, 2003), pp. 86–87.

    Google Scholar 

  12. A. V. Naumov, “Carbon dioxide and methane in soils and atmosphere of the mire systems of Western Siberia,” Sib. Ekol. Zh., No. 3, 313–318 (2002).

    Google Scholar 

  13. V. V. Novikov and A. V. Rusakov, “Release and absorption of greenhouse gases in ameliorated peat soils of the Rostov Lowland,” Eurasian Soil Sci. 38(7), 745–751 (2005).

    Google Scholar 

  14. V. V. Novikov, A. L. Stepanov, A. I. Pozdnyakov, and E. V. Lebedeva, “Seasonal dynamics of CO2, CH4, N2O, and NO emissions from peat soils of the Yakhroma River floodplain,” Eurasian Soil Sci. 37(7), 755–761 (2004).

    Google Scholar 

  15. M. V. Semenov, I. K. Kravchenko, V. M. Semenov, T. V. Kuznetsova, L. E. Dulov, S. N. Udal’tsov and A. L. Stepanov, “Carbon dioxide, methane, and nitrous oxide fluxes in soil catena across the right bank of the Oka River (Moscow oblast),” Eurasian Soil Sci. 43(5), 541–549 (2010).

    Article  Google Scholar 

  16. V. M. Semenov, I. K. Kravchenko, T. V. Kuznetsova, N. A. Semenova, S. A. Bykova, L. E. Dulov, V. F. Gal’chenko, G. Pardini, M. Gispert, P. Boeckx, and O. van Cleemput, “Seasonal dynamics of atmospheric methane oxidation in gray forest soils,” Microbiology (Moscow) 73(3), 356–362 (2004).

    Article  Google Scholar 

  17. A. A. Sirin, G. G. Suvorov, M. V. Chistotin, and M. V. Glagolev, “Values of methane emission from drainage ditches,” Dyn. Okruzh. Sredy Global’nye Izmen. Klim. 3(2/6) (2012). http://www.ugrasu.ru/uploads/files/EDCC_3_2_Sirin.pdf. Cited November 23, 2013.

    Google Scholar 

  18. A. P. S. Adamsen and G. M. King, “Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen,” Appl. Environ. Microbiol. 59(2), 485–490 (1993).

    Google Scholar 

  19. N. G. Andronova and I. L. Karol, “The contribution of USSR sources to global methane emission,” Chemosphere 26, 111–126 (1993). doi: 10.1016/0045-6535(93)90416-3

    Article  Google Scholar 

  20. M. Bender and R. Conrad, “Kinetics of CH4 oxidation in toxic soils exposed to ambient air or high CH4 mixing ratios,” FEMS Microbiol. Lett. 101(4), 261–269 (1992). doi: 10.1111/j.1574-6968.1992.tb05783.x

    Article  Google Scholar 

  21. M. S. Castro, P. A. Steudler, J. M. Melillo, J. D. Aber, and R. D. Bowden, “Factors controlling atmospheric methane consumption by temperate forest soils,” Global Biogeochem. Cycles 9(1), 1–10 (1995). doi: 10.1029/94GB02651

    Article  Google Scholar 

  22. D. E. Collier, “No difference in leaf respiration rates among temperate, subarctic, and arctic species grown under controlled conditions,” Can. J. Bot. 74(2), 317–320 (1996). doi: 10.1139/b96-039

    Article  Google Scholar 

  23. R. Conrad, “Microbial ecology of methanogens and methanotrophs,” Adv. Agron. 96, 1–63 (2007). doi: 10.1016/S0065-2113(07)96005-8

    Article  Google Scholar 

  24. R. Conrad, “Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO),” Microbiol. Rev. 60(4), 609–640 (1996).

    Google Scholar 

  25. P. M. Crill, “Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil,” Global Biogeochem. Cycles 5(4), 319–334 (1991). doi: 10.1029/91GB02466.

    Article  Google Scholar 

  26. E. Garnier, “Growth analysis of congeneric annual and perennial grass species,” J. Ecol. 80(4), 665–675 (1992).

    Article  Google Scholar 

  27. G. Gerard and J. Chanton, “Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits,” Biogeochemistry 23(2), 79–97 (1993). doi: 10.1007/BF00000444

    Article  Google Scholar 

  28. M. V. Glagolev, E. A. Golovatskaya, and N. A. Shnyrev, “Greenhouse gas emission in West Siberia,” Contemp. Probl. Ecol. 1(1), 136–146 (2008). doi: 10.1134/S0001433811020113

    Google Scholar 

  29. M. Glagolev, I. Kleptsova, I. Filippov, S. Maksyutov, and T. Machida, “Regional methane emission from West Siberia mire landscapes,” Environ. Res. Lett. 6, 045214 (2011). doi: 10.1088/1748-9326/6/4/045214

    Article  Google Scholar 

  30. M. V. Glagolev, A. F. Sabrekov, I. E. Kleptsova, I. V. Fil-ippov, E. D. Lapshina, and T. Machida, and Sh. Sh. Maksyutov, “Methane emission from bogs in the subtaiga of Western Siberia: the development of standard model,” Eurasian Soil Sci. 45(10), 947–957 (2012). doi: 10.1134/S106422931210002X

    Article  Google Scholar 

  31. M. Heimann, “Atmospheric science: enigma of the recent methane budget,” Nature 476(7359), 157–158 (2011). doi: 10.1038/476157a

    Article  Google Scholar 

  32. G. L. Hutchinson and A. R. Mosier, “Improved soil cover method for field measurement of nitrous-oxide fluxes,” Soil Sci. Soc. Am. J. 45, 311–316 (1981).

    Article  Google Scholar 

  33. G. M. King, “Associations of methanotrophs with the roots and rhizomes of aquatic vegetation,” Appl. Environ. Microbiol. 60(9), 3220–3227 (1994).

    Google Scholar 

  34. C. Knief and P. F. Dunfield, “Response and adaptation of different methanotrophic bacteria to low methane mixing ratios,” Environ. Microbiol. 7(9), 1307–1317 (2005). doi: 10.1111/j.1462-2920.2005.00814.x

    Article  Google Scholar 

  35. C. Knief, A. Lipski, and P. F. Dunfield, “Diversity and activity of methanotrophic bacteria in different upland soils,” Appl. Environ. Microbiol. 69(11), 6703–6714 (2003). doi: 10.1128/AEM.69.11.6703-6714.2003

    Article  Google Scholar 

  36. S. Kolb, C. Knief, P. F. Dunfield, and R. Conrad, “Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils,” Environ. Microbiol. 7(8), 1150–1161 (2005). doi: 10.1111/j.14622920.2005.00791.x

    Article  Google Scholar 

  37. M. Koschorreck and R. Conrad, “Oxidation of atmospheric methane in soil: measurements in the field, in soil cores and in soil samples,” Global Biogeochem. Cycles 7(1), 109–121 (1993). doi: 10.1029/92GB02814

    Article  Google Scholar 

  38. M. Krüger, P. Frenzel, and R. Conrad, “Microbial processes influencing methane emission from rice fields,” Global Change Biol. 7(1), 49–63 (2001). doi: 10.1046/j.1365-2486.2001.00395.x

    Article  Google Scholar 

  39. I. Kurganova, V. Lopes de Gerenyu, L. Rozanova, D. Sapronov, T. Myakshina, and V. Kudeyarov, “Annual and seasonal CO2 fluxes from Russian southern taiga soils,” Tellus B 55(2), 338–344 (2003). doi: 10.1034/j.1600-0889.2003.00047.x

    Article  Google Scholar 

  40. M. B. Rayment and P. G. Jarvis, “An improved open chamber system for measuring soil CO2 effluxes in the field,” J. Geophys. Res.: Atmos. 102(24), 28779–28784 (1997).

    Article  Google Scholar 

  41. P. B. Reich, M. B. Walters, M. G. Tjoelker, D. Vanderklein, and C. Buschena, “Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate,” Funct. Ecol. 12(3), 395–405 (1998). doi: 10.1046/j.1365-2435.1998.00209.x

    Article  Google Scholar 

  42. M. E. Repo, J. T. Huttunen, A. V. Naumov, A. V. Chichulin, E. D. Lapshina, W. Bleuten, and P. J. Martikainen, “Release of CO2 and CH4 from small wetland lakes in western Siberia,” Tellus B 59, 788–796 (2007). doi: 10.1111/j.1600-0889.2007.00301

    Article  Google Scholar 

  43. H. Rodhe, “A comparison of the contribution of various gases to the greenhouse effect,” Science 248, 1217–1219 (1990). doi: 10.1126/science.248.4960.1217

    Article  Google Scholar 

  44. B. Shipley and D. Meziane, “The balanced growth hypothesis and the allometry of leaf and root biomass allocation,” Funct. Ecol. 16(3), 326–331 (2002).

    Article  Google Scholar 

  45. World Reference Base for Soil Resources 2014, International soil classification system for naming soils and creating legends for soil maps,” in IUSS Working Group WRB. World Soil Resources Reports No. 106 (Food and Agriculture Organisation, Rome, 2014).

  46. X. Zhu, Q. Zhuang, Z. Qin, M. Glagolev, and L. Song, “Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks,” Gl. Biogeochem. Cycles 27(2), 592–604 (2013). doi: 10.1002/gbc.20052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Sabrekov.

Additional information

Original Russian Text © A.F. Sabrekov, M.V. Glagolev, I.A. Fastovets, B.A. Smolentsev, D.V. Il’yasov, Sh.Sh. Maksyutov, 2015, published in Pochvovedenie, 2015, No. 8, pp. 963–973.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabrekov, A.F., Glagolev, M.V., Fastovets, I.A. et al. Relationship of methane consumption with the respiration of soil and grass-moss layers in forest ecosystems of the southern taiga in Western Siberia. Eurasian Soil Sc. 48, 841–851 (2015). https://doi.org/10.1134/S1064229315080062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315080062

Keywords

Navigation