Skip to main content
Log in

Transformation of corn plant residues in loamy and sandy substrates

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The mineralization and humification dynamics of corn plant residues in loamy and sandy substrates have been studied under laboratory conditions. It has been shown that the dynamics are determined by the undulating development laws of the microbial community under constant temperature and moisture conditions. At the same time, the intensity and final results of the processes significantly differ depending on the composition and properties of the mineral substrate. The loss of Corg during the mineralization and the content of newly formed humic substances reached the maximum values a month after the beginning of the experiment. The mineralization is more intensive in sand at the early stages, and the humification is more active in loam throughout the incubation period. The loamy substrate has better protective properties compared to the sand; therefore, it favors the accumulation of significant amounts of fulvic acids (FAs), along with humic acids (HAs), and causes the relative fulvatization of the humic substances. It has been found using densimetric fractionation and Fourier IR spectroscopy that the different mineralogy of the fractions results in differences in the chemical composition of the formed mineral-organic compounds of newly formed humic substances, mainly due to carboxyl and nitrogen-containing groups. The similarity of the humification products in the heavy fractions of the loamy and sandy substrates has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Aleksandrova, Soil Organic Matter and the Processes of Its Transformation, (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. L. H. Aleksandrova, “Humus-forming processes in soil,” in Soil Humus Substances, Zap. Leningr. Sel’skokhoz. Inst., 142, 26–82 (1970).

    Google Scholar 

  3. L. N. Aleksandrova and V. F. Arshavskaya, “Changes in the composition of humic acids in the course of humification of plant residues,” Zap. Leningr. Sel’skokhoz. Inst., 117, 14–21 (1966).

    Google Scholar 

  4. T. V. Alekseeva, P. B. Kabanov, B. N. Zolotareva, A. O. Alekseev, V. A. Alekseeva, “Humic substances in the palygorskite organomineral complex from fossil soil of the Late Carboniferous period in the southern Moscow region,” Dokl. Akad. Nauk. 425(2), 265–270 (2009).

    Google Scholar 

  5. N. N. Bambalov, A. V. Khoruzhik, and N. S. Yankovskaya, “Regularities and specific features of humification in peat soils,” in Organic Matter of Soils and Methods of Its Study (LSKhI, Leningrad, 1990), pp. 29–33 [in Russian].

    Google Scholar 

  6. L. J. Bellamy, The Infrared Spectra of Complex Molecules, 2nd ed. (Methuen, London, 1959).

    Google Scholar 

  7. A. Ya. Vanyushina and L. S. Travnikova, “Organic-Mineral Interactions in Soils: A Review,” Eur. Soil Sci. 36(4), 379–387 (2003).

    Google Scholar 

  8. Humic Substances in the Biosphere, Ed. by D. S. Orlov (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  9. T. A. Zubkova and L. O. Karpachevskii, Matrix Organization of Soils (Rusaki, Moscow, 2001) [in Russian].

    Google Scholar 

  10. M. M. Kononova, Soil Organic Matter (Izd. Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  11. M. M. Kononova, Problems and Challenges of Studying Soil Humus (Izd. Akad. Nuak SSSR, Moscow, 1951) [in Russian].

    Google Scholar 

  12. G. N. Kurochkina and D. L. Pinskii, “Kinetics and thermodynamics of polyelectrolyte adsorption on synthetic aluminosilicate gels,” Eur. Soil Sci. 36(2), 155–163 (2003).

    Google Scholar 

  13. G. N. Kurochkina and D. L. Pinskii, “The formation of mineral-organic compounds and their effect on the surface properties of soil aluminosilicates,” Eur. Soil Sci. 37(4), 378–387 (2004).

    Google Scholar 

  14. M. F. Lyuzhin, “Mineralization and humification of plant residues in soil,” Zap. Leningr. Sel’skokhoz. Inst. 117(1), 27–39 (1968).

    Google Scholar 

  15. E. G. Morgun and M. I. Makarov, “Use of sodium polytungstate in the granulo-densimetric fractionation of soil material,” Eur. Soil Sci. 44(4), 394–398 (2011).

    Article  Google Scholar 

  16. A. M. Semenov, V. M. Semenov, and A. van Bruggen, “Diagnosis of the health and quality of soils,” Agrokhimiya, No. 12, 4–20 (2011).

    Google Scholar 

  17. D. S. Orlov, Humic Acids of Soils and a General Theory of Humification (Izd. Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  18. D. S. Orlov, “Organic substances of Russian soils,” Eur. Soil Sci. 31(9), 946–953 (1998).

    Google Scholar 

  19. D. S. Orlov and L. A. Grishina, Practicum on Humus Chemistry (Izd. Mosk. Gos. Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  20. D. S. Orlov and N. N. Osipova, Infrared Spectra of Soils and Soil Components (Izd. Mosk. Gos. Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  21. D. L. Pinskii, Ion-Exchange Processes in Soils (ONTI, Pushchino, 1997) [in Russian].

    Google Scholar 

  22. D. L. Pinskii and G. N. Kurochkina, “Evolution of theories on soil adsorption capacity,” in Soil Processes and Spatio-Temporal Organization of Soils (Nauka, Moscow, 2006), pp. 295–312 [in Russian].

    Google Scholar 

  23. A. V. Rybalkina and E. V. Kononenko, “Microflora of decomposing plant residues,” Pochvovedenie, No. 5, 21–34 (1959).

    Google Scholar 

  24. L. S. Travnikova, “Patterns of humus accumulation: new data and their interpretation,” Eur. Soil Sci. 35(7), 737–748 (2002).

    Google Scholar 

  25. L. S. Travnikova, N. A. Titova, and M. Sh. Shaimukhametov, “The role of products of interaction between organic and mineral componensts in the genesis and fertility of soils,” Pochvovedenie, No. 10, 81–97 (1992).

    Google Scholar 

  26. V. A. Kholodov, A. I. Konstantinov, and I. V. Perminova, “The carbon distribution among the functional groups of humic acids isolated by sequential alkaline extraction from gray forest soil,” Eur. Soil Sci. 42(11), 1229–1233 (2009).

    Article  Google Scholar 

  27. O. G. Chertov, A. S. Komarov, and M. A. Nadporozhskaya, “Analysis of the dynamics of plant residue mineralization and humification in soil,” Eur. Soil Sci. 40(2), 140–148 (2007).

    Article  Google Scholar 

  28. M. Sh. Shaimukhametov, N. A. Titova, L. S. Travni- kova, and E. M. Lebenets, “Application of physical fractionation methods to characterize soil organic matter,” Pochvovedenie, No. 8, 131–141 (1984).

    Google Scholar 

  29. U. Birkel, G. Gerold, and J. Niemeyer, “Abiotic reactions of organics on clay mineral surfaces,” Developments in Soil Science. 28Part 1, 437–447 (2002).

    Article  Google Scholar 

  30. C. Chenu and A. F. Plante, “Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the “primary organo-mineral complex”, Eur. J. Soil Sci. 57(4), 596–607 (2006).

    Article  Google Scholar 

  31. D. P. Dick, J. H. Z. Santos, and E. M. Ferranti, “Chemical characterization and infrared spectroscopy of soil organic matter from two southern Brazilian soils,” R. Bras. Ci. Solo. 27(1), 29–39 (2003).

    Article  Google Scholar 

  32. G. W. Ford and D. J. Creenland, “The dynamics of partially humified organic matter in some arable soils,” Trans. 9th Intern. Congr. Soil Sci., Adelaide, Australia, 1968, pp. 403–410.

    Google Scholar 

  33. W. Flaig, “Organic compounds in soil,” Soil Sci. 111(1), 19–33 (1971).

    Article  Google Scholar 

  34. K. Kaiser and G. Guggenberger, “Mineral surfaces and soil organic matter,” Eur. J. Soil Sci. 54(Iss. 2), 219–236 (2003).

    Article  Google Scholar 

  35. K. Kaiser, G. Guggenberger, L. Haumaier, and W. Zech, “Dissolved organic matter sorption on sub soils and minerals studied by 13C-NMR and DRIFT spectroscopy,” Eur. J. Soil Sci. 48(2), 301–310 (1997).

    Article  Google Scholar 

  36. J. Lehmann, J. Kinyangi, and D. Solomon, “Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms,” Biogeochemistry. 85(1), 45–57 (2007).

    Article  Google Scholar 

  37. J. Magid, A. Gorissen, and K. E. Giller, “In search of the elusive “active” fraction of soil organic matter: three size-density fractionation methods for tracing the fate of homogeneously 14C-labelled plant material,” Soil Biol. Biochem. 28(1), 89–99 (1996).

    Article  Google Scholar 

  38. R. Mikutta, M. Kleber, M. S. Torn, and R. Jahn, “Stabilization of soil organic matter: association with minerals or chemical recalcitrance?,” Biogeochemistry. 77(1), 25–56 (2006).

    Article  Google Scholar 

  39. M. Schnitzer, “Soil organic matter,” Proc. 3rd Intern. Symp., Vienna (Intern. At. En. Agency, 1977), pp. 117–132.

    Google Scholar 

  40. J. Six, E. T. Elliot, K. Paustian, and J. W. Doran, “Aggregation and soil organic matter accumulation in cultivated and native grassland soils,” Soil Sci. Soc. Am. J. 62(5), 1367–1377 (1998).

    Article  Google Scholar 

  41. J. Six, P. Callewaert, S. Lenders, S. De Gryze, S. J. Morris, E. G. Gregorich, E. A. Paul, K. Paustian, “Measuring and understanding carbon storage in afforested soils by physical fractionation,” Soil Sci. Soc. Am. J. 66(6), 1981–1987 (2002).

    Article  Google Scholar 

  42. P. Sollins, M. G. Kramer, C. Swanston, K. Lajtha, T. Filley, A. K. Aufdenkampe, R. Wagai, R. D. Bowden, “Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization,” Biogeochemistry. 96(1–3), 209–231 (2009).

    Article  Google Scholar 

  43. P. Sollins, C. Swanston, M. Kleber, T. Filley, M. Kramer, S. Crow, B. A. Caldwell, K. Lajtha, and R. Bowden, “Organic C and N stabilization in a forest soil: evidence from sequential density fractionation,” Soil Biol. Biochem. 38(11), 3313–3324 (2006).

    Article  Google Scholar 

  44. L. W. Turchenek and J. M. Oades, “Fractionation of organo-mineral complexes by sedimentation and density techniques,” Geoderma. 21 (1979).

  45. M. Van Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57(4), 426–445 (2006).

    Article  Google Scholar 

  46. A. G. Zavarzina, “A mineral support and biotic catalyst are essential in the formation of highly polymeric soil humic substances,” Eur. J. Soil Sci. 39(Suppl. 1), 48–53 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Mal’tseva.

Additional information

Original Russian Text © A.N. Mal’tseva, B.N. Zolotareva, D.L. Pinskii, 2013, published in Pochvovedenie, 2013, No. 10, pp. 1239–1252.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mal’tseva, A.N., Zolotareva, B.N. & Pinskii, D.L. Transformation of corn plant residues in loamy and sandy substrates. Eurasian Soil Sc. 47, 466–477 (2014). https://doi.org/10.1134/S1064229314050147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314050147

Keywords

Navigation