Skip to main content
Log in

Coaxial-Type Magnetically Isolated Relativistic Vircator

  • MICROWAVE ELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A coaxial-type magnetically isolated relativistic vircator was simulated by the particle-in-cell method. It is shown that, after the creation of a virtual cathode in the second vircator tube, a squeezed state of the electron beam is established in the first vircator tube, which represents a one-component hot electron plasma with an electron density of n ≅ 1.4 × 1011 cm–3 and a temperature of 50 keV; the plasma formation time is 125 ns. The microwave characteristics of the vircator were calculated. The peak microwave power generated during the first 100 ns (the peak efficiency is ~17.5%) was found to be ~1.4 GW and, after the squeezed state is established, the generation power decreased to an average value of ~250 MW (the average efficiency is ~3%). A spectrogram of the radial component of the electric field in a coaxial line was calculated. It was observed that the oscillation frequency increases during the first 100 ns and then remains unchanged at a level of \(f \cong 1.4\) GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Platt, B. Anderson, J. Christofferson, et al., Appl. Phys. Lett. 54 (13), 1215 (1989).

    Article  Google Scholar 

  2. G. A. Huttlin, M. S. Bushell, D. B. Conrad, et al., IEEE Trans. Plasma Sci. 18 (3), 618 (1990).

    Article  Google Scholar 

  3. A. Bromborsky, F. Agee, M. Bollen, et al., Proc. SPIE– Int. Soc. Opt. Eng. 0873, 51 (1988).

    Google Scholar 

  4. R. F. Hoeberling and M. V. Fazio, IEEE Trans. Electron. Comput. 34 (3), 252 (1992).

    Article  Google Scholar 

  5. A. N. Didenko, A. P. Arzin, A. G. Zherlitsyn, et al., “Relativistic triode microwave generators,” in Relativistic High-Frequency Electronics (IPF AN SSSR, Gor’kii, 1984), No. 4, p. 104.

  6. A. A. Rukhadze, S. D. Stolbetsov, and V. P. Tarakanov, Radiotekh. Elektron. (Moscow) 37, 385(1992).

    Google Scholar 

  7. A. E. Dubinov and V. D. Selemir, J. Commun. Technol. Electron. 47, 575 (2002).

    Google Scholar 

  8. V. D. Selemir, A. E. Dubinov, V. V. Voronin, and V. S. Zhdanov, IEEE Trans. Plasma Sci. 48, 1860 (2020).

    Article  Google Scholar 

  9. J. Benford, J. Swegle, and E. Schamiloglu, High Power Microwaves (Boca Raton: Taylor & Francis Group), 2007.

  10. B. V. Alyokhin, A. E. Dubinov, V. D. Selemir, et al., IEEE Transactions on Plasma Science 22 (5), 945 (1994).

  11. D. Sullivan, “High power microwave generator using relativistic electron beam in waveguide drift tube,” U.S. Patent No. 4345220 (17 Aug. 1982).

  12. N. A. Nikolov, K. G. Kostov, I. P. Spasovsky, and V. A. Spasov, Electron. Lett. 24 (23), 1445 (1988).

    Article  Google Scholar 

  13. V. P. Grigor’ev, A. G. Zherlitsyn, and T. V. Koval’, Fiz. Plazmy 16, 1353 (1990).

    Google Scholar 

  14. W. Jiang, H. Kitano, L. Huang, et al., IEEE Trans. Plasma Sci. 24, 187 (1996).

    Article  Google Scholar 

  15. S. A. Kurkin, A. A. Koronovskii, and A. E. Khramov, Tech. Phys. 54, 1520 (2009).

    Article  Google Scholar 

  16. A. M. Ignatov and V. P. Tarakanov, Phys. Plasmas 1, 741 (1994).

    Article  Google Scholar 

  17. A. E. Dubinov, J. Commun. Technol. Electron. 45, 792 (2000).

    Google Scholar 

  18. G. Convert and J.-P. Brasile, “Electron beam device generating microwave energy via a modulated virtual cathode,” Thomson-CSF Patent, No. 5164634 (17 Nov. 1992).

  19. A. E. Dubinov, S. K. Saikov, and V. P. Tarakanov, IEEE Trans. Plasma Sci. 48, 141 (2020).

    Article  Google Scholar 

  20. A. E. Dubinov and V. P. Tarakanov, Plasma Phys. Rep. 46, 570 (2020).

    Article  Google Scholar 

  21. A. E. Dubinov, V. D. Selemir, and V. P. Tarakanov, IEEE Trans. Plasma Sci. 49, 1834 (2021).

    Article  Google Scholar 

  22. A. E. Dubinov and V. P. Tarakanov, IEEE Trans. Plasma Sci. 44, 1391 (2016).

    Article  Google Scholar 

  23. V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, 1992).

    Google Scholar 

  24. A. E. Dubinov and V. P. Tarakanov, Laser and Particle Beams 35, 362 (2017).

    Article  Google Scholar 

  25. A. E. Dubinov and V. P. Tarakanov, IEEE Trans. Plasma Sci. 49, 1135 (2021).

    Article  Google Scholar 

  26. E. D. Donets, E. E. Donets, E. M. Syresin, A. E. Dubi-nov, I. V. Makarov, S. A. Sadovoy, S. K. Saikov, and V. P. Tarakanov, Plasma Phys. Rep. 35, 54 (2009).

    Article  Google Scholar 

  27. S. Mumtaz, J. S. Lim, B. Ghimire, et al., Phys. Plasmas 25, 103113 (2018).

    Article  Google Scholar 

  28. W. Jiang, IEEE Trans. Plasma Sci. 38, 1325 (2010).

    Article  Google Scholar 

  29. E. Postacı, H. Erciyas, N. Y. A. Atmaca, et al., IEEE Trans. Plasma Sci. 48, 3565 (2020).

    Article  Google Scholar 

  30. R. Tanaka, Y. Fukada, and H. Ito, Phys. Plasmas 28, 033103 (2021).

    Article  Google Scholar 

  31. A. E. Dubinov, Plasma Phys. Rep. 26, 439 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinov, A.E., Tarakanov, V.P. Coaxial-Type Magnetically Isolated Relativistic Vircator. J. Commun. Technol. Electron. 67, 675–679 (2022). https://doi.org/10.1134/S1064226922050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922050059

Navigation