Skip to main content
Log in

Resistive Switching of Memristors Based on (Co40Fe40B20)x(LiNbO3)100 – x Nanocomposite with a LiNbO3 Interlayer: Plasticity and Time Characteristics

  • NANOELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The resistive switching (RS) of metal/nanocomposite/metal (M/NC/M) memristive structures based on the (Co40Fe40B20)x(LiNbO3)100 – x nanocomposite with a ferromagnetic alloy content х ≈ 8–20 at % is studied. The structures were synthesized by ion beam sputtering with an increased oxygen content (≈2 × 10–5 Torr) at the initial stage of NC growth, as a result of which a thin (15–18 nm) LiNbO3 layer appears at the bottom electrode. It is found that the structures have multilevel character of RS (at least four levels) with the retention time of the emerging resistive states of more than 104 s and demonstrate the possibility of the resistive states change according to biosimilar rules such as spike-timing-dependent plasticity (STDP). Unusual kinetics of RS to the low-resistance state was found: RS occurs with a delay of about 70 μs; the RS time in this case reaches ~5 ns, and the energy consumption for switching is ~1 nJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Chua, G. Ch. Sirakoulis, and A. Adamatzky, Handbook of Memristor Networks (Springer-Verlag, Cham, 2019).

    Book  Google Scholar 

  2. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  Google Scholar 

  3. J. del Valle, J. G. Ramirez, M. J. Rozenberg, et al., J. Appl. Phys. 124, 211101 (2018).

    Article  Google Scholar 

  4. Q. Xia and J. J. Yang, Nature Mater. 18, 309 (2019).

    Article  Google Scholar 

  5. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, JETP 126, 353 (2018).

    Article  Google Scholar 

  6. B. J. Choi, C. T. Antonio, J. N. Kate, et al., Nano Lett. 13, 3213 (2013).

    Article  Google Scholar 

  7. V. A. Levanov, A. V. Emel’yanov, V. A. Demin, K. E. Nikirui, A. V. Sitnikov, S. N. Nikolaev, A. S. Vedeneev, Yu. E. Kalinin, and V. V. Ryl’kov, J. Commun. Technol. Electron. 63, 491 (2018).

    Article  Google Scholar 

  8. K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, et al., AIP Advances 9, 065116 (2019).

    Article  Google Scholar 

  9. A. V. Emelyanov, K. E. Nikiruy, A. V. Serenko, et al., Nanotecnology 31, 045201 (2020).

    Article  Google Scholar 

  10. K. E. Nikiruy, A. V. Emelyanov, V. V. Rylkov, A. V. Sitnikov, M. Yu. Presnyakov, E. V. Kukueva, Yu. V. Grishchenko, A. A. Minnekhanov, K. Yu. Chernoglazov, S. N. Nikolaev, I. A. Chernykh, M. L. Zanaveskin, and V. A. Demin, J. Commun. Technol. Electron. 64, 1135 (2019).

    Article  Google Scholar 

  11. D. Ielmini and H.-S. P. Wong, Nature Electronics 1, 333 (2018).

    Article  Google Scholar 

  12. S. Menzel, M. Waters, A. Marchewka, et al., Adv. Funct. Mater. 21, 4487 (2011).

    Article  Google Scholar 

  13. Y. Nishi and S. Menzel, IEEE Electron Device Lett. 35, 259 (2014).

    Article  Google Scholar 

  14. S. Yu, Y. Wu, and H.-S. P. Wong, Appl. Phys. Lett. 98, 103514 (2011).

    Article  Google Scholar 

  15. B. J. Choi, S. Choi, K. M. Kim, et al., Appl. Phys. Lett. 89, 012906 (2006).

    Article  Google Scholar 

  16. V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, et al., Phys. Rev. 95, 144202.

  17. K. Zarudnyi, A. Mehonic, L. Montesi, et al., Front. Neurosci. 12, 57 (2018).

    Article  Google Scholar 

  18. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, et al., Sci. Re 6, 21331 (2016).

    Google Scholar 

  19. K. E. Nikiruy, A. V. Emelyanov, V. V. Rylkov, A. V. Sitnikov, and V. A. Demin, Tech. Phys. Lett. 45, 386 (2019).

    Article  Google Scholar 

  20. G. Hennequin, E. J. Agnes, and T. P. Vogels, Annu. Rev. Neurosci 40 (1), 557 (2017).

    Article  Google Scholar 

  21. M. Lanza, H.-S. P. Wong, E. Pop, et al., Adv. Electron. Mater 5, 1800143 (2019).

    Article  Google Scholar 

Download references

Funding

This study was carried out using equipment of the resource centers of the National Research Center Kurchatov Institute and was supported by the Russian Science Foundation, project no. 16-19-10233 in the synthesis of memristors and the study of their structural and temporal characteristics; it was also supported by the Russian Foundation for Basic Research, project nos. 18-37-00267, 18‑07-00729, and 19-07-00738 and a state contract in the study of the electrophysical properties of structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rylkov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsukatova, A.N., Nikiruy, K.E., Minnekhanov, A.A. et al. Resistive Switching of Memristors Based on (Co40Fe40B20)x(LiNbO3)100 – x Nanocomposite with a LiNbO3 Interlayer: Plasticity and Time Characteristics. J. Commun. Technol. Electron. 65, 1198–1203 (2020). https://doi.org/10.1134/S1064226920090077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920090077

Navigation