Skip to main content
Log in

Ground (Weibull-Distributed) Clutter Suppression Based on Independent Component Analysis for Detection of Swerling Target Models

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The present study considers detection of the weak Swerling targets which exist in the clutter Doppler cell of the Weibull-distributed ground-based clutter by means of Independent Component Analysis (ICA). We present a new detector based on convolutive ICA that is independent of target and clutter statistical distribution and has no need to the previous knowledge of the radar signals. For the detection of radar target using ICA, there are some problems that are solved by two wisely proposed approach through the detector. Synthetic generated clutter and target are used to show quantitatively and qualitatively the capability of the proposed ICA-based detector. Also, the method is tested against real-life data. Finally, the computational time is considered and the superiority of the detector is shown by a comparison between the proposed and a typical Neyman-Pearson (NP) detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Greco, F. Bordoni, and F. Gini, “X-band sea-clutter nonstationarity: Influence of long waves,” IEEE J. Ocean. Eng. 29, 269–283 (2004).

    Article  Google Scholar 

  2. R. Vicen-Bueno, M. Rosa-Zurera, M. P. Jarabo-Amores, and R. Gil-Pita, “Automatic target detection in simulated ground clutter (Weibull distributed) by multilayer perceptrons in a low-resolution coherent radar,” IET Radar, Sonar Navig. 4, 315–328 (2010).

    Article  Google Scholar 

  3. A. Farina, F. Gini, M. V. Greco, and L. Verrazzani, “High resolution sea clutter data: statistical analysis of recorded live data,” IEE Proceedings-Radar, Sonar Navig. 144, 121–130 (1997).

  4. S. Haykin, Adaptive Radar Signal Processing (Wiley, Hoboken, New Jersey, 2007).

    Google Scholar 

  5. Modern Radar Detection Theory, Ed. by De Maio and Greco, (IET, 2015).

  6. Y.-L. Shi and P.-L. Shui, “Target detection in high-resolution sea clutter via block-adaptive clutter suppression,” IET Radar, Sonar Navig. 5, 48–57 (2011).

    Article  Google Scholar 

  7. Y. Xiang, D. Peng, and Z. Yang, Blind Source Separation (Springer Singapore, Singapore, 2015).

    Google Scholar 

  8. A. Cichocki and S.-I. Amari, Adaptive Blind Signal and Image Processing (Chichester, Wiley, 2002).

    Book  Google Scholar 

  9. S. Makino, T.-W. Lee, and H. Sawada, Blind Speech Separation (Springer-Verlag, 2007).

    Book  Google Scholar 

  10. H. Ghahramani, M. Barari, & Mohammad, H. Bastani, and M. H. Bastani, Maritime radar target detection in presence of strong sea clutter based on blind source separation,” IETE J. Res. 60, 331–344 (2014).

    Article  Google Scholar 

  11. H. Ghahramani, M. Barari, and M. H. Bastani, “Suppressing sea clutter in maritime radar based on DUET BSS,” J. Iran. Assoc. Electr. Electron. Eng. 12 (2015).

  12. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley, New York, 2001).

    Book  Google Scholar 

  13. A. Mansour, A. K. Barros, and N. Ohnishi, “Blind separation of sources: Methods, assumptions and applications,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 83, 1498–1512 (2000).

    Google Scholar 

  14. M. W. Long, Radar Reflectivity of Land and Sea (Artech House Books, 1983).

    Google Scholar 

  15. S. C. Douglas, M. Gupta, H. Sawada, and S. Makino, “Spatio-temporal fast ICA algorithms for the blind separation of convolutive mixtures,” IEEE Trans. Audio, Speech, Lang. Processing 15, 1511–1520 (2007).

    Article  Google Scholar 

  16. A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks 13, 411–430 (2000).

    Article  Google Scholar 

  17. M. I. Skolnik, Introduction to Radar Systems (Artech House, Norwood, MA, 2005).

    Google Scholar 

  18. M. A. Richards, Fundamental of Radar Signal Processing, 2nd Ed., (McGraw-Hill, 2014).

    Google Scholar 

  19. M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar, Vol. I: Basic Principles (SciTech Pub, 2010).

  20. Y. Xiang, D. Peng, and Z. Yang, Blind Source Separation: Dependent Component Analysis (Springer-Verlag, 2015).

    Google Scholar 

  21. P. Comon, “Independent component analysis, a new concept,” Signal Process. 36, 287–314 (1994).

    Article  Google Scholar 

  22. P. P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice Hall, 1993).

    MATH  Google Scholar 

  23. L. Gang and K. Yu, “Modelling and simulation of coherent Weibull clutter,” IEE Proc. F (Radar Signal Process.) 136, 2–12 (1989).

    Article  Google Scholar 

  24. I. Pobocikova and Z. Sedliackova, “Comparison of four methods for estimating the Weibull distribution parameters,” Appl. Math. Sci. 8, 4137–4149 (2014).

    Google Scholar 

  25. P. Ramírez and J. A. Carta, “Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study,” Energy Convers. Manag. 46, 2419–2438 (2005).

    Article  Google Scholar 

  26. R. Vicen-bueno, M. Rosa-zurera, S. Member, M. P. Jarabo-amores, and D. De Mata-moya, “Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks,” IEEE Trans. Instrum. Meas. 59, 3139–3151 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Parhizgar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahramani, H., Parhizgar, N., Arand, B.A. et al. Ground (Weibull-Distributed) Clutter Suppression Based on Independent Component Analysis for Detection of Swerling Target Models. J. Commun. Technol. Electron. 65, 160–171 (2020). https://doi.org/10.1134/S1064226920020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920020072

Keywords:

Navigation