Skip to main content
Log in

Electromagnetic Crystal with Capacitive Cylinders

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The article investigates an electromagnetic crystal in the form of metal cylinders with capacitive gaps in the nodes of a rectangular two-dimensional periodic lattice between metal screens forming a flat waveguide. Using a standard electrodynamic modeling system, the authors studied the diffraction of a plane wave at the boundary of an infinite layer for one coordinate and a finite layer for another coordinate, and determined the band structure of the electromagnetic crystal. The behavior of the pass and stop bands was studied as a function of the crystal parameters. An additional passband was discovered, the occurrence of which is associated with excitation of a higher-type wave of a plane waveguide. The effect of series resonance in a capacitive cylinder on the damping of a wave in the stop band is considered. The possibility of an approximate description of an electromagnetic crystal in the stop band is investigated. A number of models are proposed, obtained via numerical solution of the problem of oblique incidence of a plane wave on the crystal boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. E. Yablonovitch, Phys. Rev. Lett. 58 (20), 2059 (1987).

    Article  Google Scholar 

  2. J. D. Joannopopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton Univ. Press, Princeton (NJ), 1995).

    MATH  Google Scholar 

  3. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2005).

    Book  Google Scholar 

  4. H. Mosallaei and Y. Rahmat-Samii, IEEE Trans. Antennas Propag. 51, 549 (2003).

    Article  Google Scholar 

  5. O. Painter, R. K. Lee, A. Scherer, et al., Science 284, 1819 (1999).

    Article  Google Scholar 

  6. A. Mekis, J. C. Chen, I. Kurland, et al., Phys. Rev. Lett. 77 (18), 3787 (1996).

    Article  Google Scholar 

  7. S.E. Bankov, J. Commun. Technol. Electron. 56, 115 (2011).

    Article  Google Scholar 

  8. S.E. Bankov, J. Commun. Technol. Electron. 54, 637 (2009).

    Article  Google Scholar 

  9. S. E. Bankov and V. A. Kaloshin, J. Commun. Technol. Electron. 55, 385 (2010).

    Article  Google Scholar 

  10. S. E. Bankov, Electromagnetic Crystals (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  11. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, et al., Appl. Phys. A 123, 56 (2017).

    Article  Google Scholar 

  12. G. Kraftmakher, V. Butylkin, Y. Kazantsev, and V. Mal’tsev, Electron. Lett. 53 (18), 1264 (2017).

    Article  Google Scholar 

  13. D. A. Usanov, A. V. Skripal’, A. V. Abramov, et al., Izv. Vyssh. Uchebn. Zaved., Elektron., No. 1, 24 (2010).

  14. V. A. Gunyakov, V. P. Gerasimov, S. A. Myslivets, V. G. Arkhipkin, S. Ya. Vetrov, G. N. Kamaev, A. V.  Shabanov, V. Ya. Zyryanov, and V. F. Shabanov, Tech. Phys. Lett. 32, 951 (2006).

    Article  Google Scholar 

  15. V. A. Gunyakov, S. A. Myslivets, A. M. Parshin, V. Ya. Zyryanov,V. G. Arkhipkin, and V. F. Shabanov, Tech. Phys. 80, 1484 (2010).

    Article  Google Scholar 

  16. C. A. Kuriazidou, H. F. Contopanagos, and N. G. Alexopolos, IEEE Trans. Microwave Theory Tech. 49, 297 (2001).

    Article  Google Scholar 

  17. N. V. Britun and V. V. Danilov, Tech. Phys. Lett. 29, 277 (2003).

    Article  Google Scholar 

  18. S. E. Bankov and L. I. Pangonis, J. Commun. Technol. Electron. 53, 274 (2008).

    Article  Google Scholar 

  19. S. E. Bankov and M. D. Duplenkova, in Proc. First Int. Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterial 2007), Rome, Italy, Oct. 21–26, 2007 (Metamaterials, 2007), p. 288.

  20. S. E. Bankov and M. D. Duplenkova, J. Radioelektron., No. 6 (2006). http://jre.cplire.ru/jre/ dec06/2/text.html.

  21. S. E. Bankov, A. A. Kurushin, and E. M. Guttsait, Computation of Optical and Microwave Problems with Help HFSS (Orkada, Moscow, 2012) [in Russian].

    Google Scholar 

  22. N. Amitay, V. Galindo, and Ch. P. Wu, Theory and Analysis of Phased Antenna Arrays (Wiley, New York, 1972; Mir, Moscow, 1974).

Download references

Funding

The study was supported by budget financing under a state task, topic no. 0030-2019-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Bankov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankov, S.E., Kalinichev, V.I. & Frolova, E.V. Electromagnetic Crystal with Capacitive Cylinders. J. Commun. Technol. Electron. 64, 926–936 (2019). https://doi.org/10.1134/S1064226919080023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919080023

Navigation