Skip to main content
Log in

Optimum energy efficient error control techniques in wireless systems: a survey

  • Statistical Radiophysics
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Energy efficiency and error free transmission have become prime concerns in wireless communication in recent years. Such networks are much more affected by errors due to dynamic channel conditions than normal wired networks. Error control coding is commonly used in the entire range of information com-munication to reduce the harmful effects of the channel. In order to overcome the communication errors in an energy efficient way, an error control mechanism with less complexity is required. Energy efficient error control techniques to prolong network lifetime in resource limited network and wireless communication remains a challenge. This paper forms a survey of recent developments on the various energy efficient error control coding techniques used in wireless communication and resource limited networks/hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Pellenz, R. D. Souza, and M. S. Pereira Fonseca, Springer Telecommun. Syst. 44, 61 (2010).

    Article  Google Scholar 

  2. G. Balakrishnan, M. Yang, Y. Jiang, and Y. Kim, in Proc. 4th. Int. Conf. Inf. Technol., Las Vagas NV, Apr. 2–4, 2007 (IEEE, New York, 2007), p. 876.

    Google Scholar 

  3. J. M. Paul Havinga, CTIT Tech. Rep. 19 (1998).

    Google Scholar 

  4. A. Chockalingam and M. Zorzi, in Proc. Veh. Technol. Conf., Ottawa, May 18–21, 1998 (IEEE, New York, 1998), p. 820.

    Google Scholar 

  5. Hong Chen, G. R. Maunder, and L. Hanzo, IEEE Commun. Surv. Tutorials. 15, 1553 (2013).

    Google Scholar 

  6. L. Hanzo, T. H. Liew, B. L. Yeap, R. Tee, and S. X. Ng, Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels, 2nd Edition, (Wiley, New York, 2011).

    Book  Google Scholar 

  7. R. Hamming, Bell Syst. Tech. J. 29, 147 (1950).

    Article  MathSciNet  Google Scholar 

  8. J. D. Costello and J. Hagenauer, IEEE Trans. Inf. Theory 44, 6 (1998).

    Article  MathSciNet  Google Scholar 

  9. B. Honary and G. Markarian, Trellis Decoding of Block Codes (Kluwer Academic, Dordrecht, The Netherlands, 1997).

    Book  MATH  Google Scholar 

  10. Mohammad Rakibul Islam, Proc. World. Acad. Sci. Eng. Technol., No. 4, 01 (2010).

  11. A. Angelin, B. Revathi, T. Gayathri, and D. Balakumaran, Int. J. Adv. Res. Electr. Electron. Instrum. Eng., 3, 2278 (2014).

    Google Scholar 

  12. C. M. Vuran and F. I. Akyildiz, IEEE/ACM Trans. Networking 17, 1063 (2009).

    Article  Google Scholar 

  13. L. S. Howard, C. Schlegel, and K. Iniewski, EURASIP J. Wireless Communications Networking 2, 1 (2006).

    Article  Google Scholar 

  14. M. P. Singha and P. Kumar, Elsevier Proc. Techol. 3, 737 (2012).

    Google Scholar 

  15. Zhen Tian, Dongfeng Yuan, and Quanquan Liang, in Proc. Wireless Commun. Mobile. Comput. Int. Conf. Crete Ireland, Aug. 6–8, 2008 (IEEE, New York, 2008), p. 401.

    Book  Google Scholar 

  16. V. Nithya, B. Ramachandran, and V. Bhaskar, Springer Wireless Pers. Commun. 77, 675 (2014).

    Article  Google Scholar 

  17. Chia-Hsiang Yang, Ting-Ying Huang, Mao-Ruei Li, and Yeong Luh Ueng, IEEE Trans. Circuits. Syst. 61, 1549 (2014).

    Google Scholar 

  18. Jasvinder Singh and Dirk Pesch, Springer Telecommun Syst. 52, 2573 (2013).

    Article  Google Scholar 

  19. N. J. Rehman, N. Alrajeh, Z. A. Khan, B. Manzoor, and S. Ahmed, Elsevier Proc. Comput. Sci. 21, 449 (2013).

    Article  Google Scholar 

  20. C. R. de Albuquerque, C. D. Cunha, and C. Pimentel, EURASIP J. Adv. Signal Process 28, 1687 (2013).

    Google Scholar 

  21. S. Ezhilarasan and Dr. P. K. Jawahar, Int. J. Electron. Commun. Eng. Adv. Res. 2, 2347 (2014).

    Google Scholar 

  22. X. Zhang, Y. Wu, J. Zhu, and Yu Zheng, IEEE Trans. VLSI Syst. 20, 1063 (2012).

    Google Scholar 

  23. V. Miloslavskaya and P. Trifonov, LCommun. Lett. 18, 1089 (2014).

    Google Scholar 

  24. Devendra Made, R. B. Khule, and Dipak Iwanate, Int. J. Eng. Trends. Technol. 4, 2231 (2013).

    Google Scholar 

  25. Xiali Van, Wenquan Feng, Qi Zhao, and Hongbo Zhao, in Proc. 3rd Int. Conf. Adv. Comput. Theory. Eng., Chengdu, Aug. 20–22, 2010 (IEEE, New York, 2010), p. 443.

    Google Scholar 

  26. X. Huang, Y. Zhang, J. Xu, and Y. Wang, in Proc. 4th. Int. Conf. Nat. Comput., Jinan, Oct. 18–20, 2008 (IEEE, New York, 2008), p. 619.

    Google Scholar 

  27. S. Huang, K. Tian, F. Tian and J. Yuan, in Proc. 5th. Int. Conf. Wireless Mobile Multimedia Networks, Beijing, Nov. 25–28, 2013 (IEEE, New York, 2013), p. 106.

    Google Scholar 

  28. A. Ghaida AL-Suhail, and W. Khalid Louis, and Turki Y. Abdallah, Int. J. Comput. Sci. Issues. 9, 1694 (2012).

    Google Scholar 

  29. Jasvinder Singh and Dirk Pesch, Springer Telecommun. Syst. 55, 253 (2014).

    Article  MATH  Google Scholar 

  30. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  31. Hang Liu, Hairuo Ma, Magda El Zarki, and Sanjay Gupta, Springer Mobile Networks Appl. 2, 167 (1997).

    Article  Google Scholar 

  32. Lin Xing and Wei Wang, Elsevier Comput. Commun. 36, 162 (2013).

    Article  MathSciNet  Google Scholar 

  33. Z. Abbas, N. Javaid, A. Javaid, et al., World Appl. Sci. J. 22, 97 (2013)

    Google Scholar 

  34. W. Stark, H. Wang, A. Worthen, et al., IEEE Wireless. Commun. 9 (4), 60 (2002).

    Article  Google Scholar 

  35. M. Y. Naderi, R. H. Rabiee, M. Khansari and M. Salehi, Elsevier Ad Hoc Networks J. 10, 1028 (2012).

    Article  Google Scholar 

  36. R. Chaudhary and V. Gupta, Int. J. Comput. Appl. Eng. Sci. 1, 2231 (2011).

    Google Scholar 

  37. V. Raghunathan, IEEE Signal. Process. Mag. 19 (2), 40–50 (2002).

    Article  Google Scholar 

  38. C. Schuler, Int. J. Wireless Inf. Networks 5, 1068 (1998).

    Article  Google Scholar 

  39. L. Liang, G. R. Maunder, and M. B. Al-Hashimi, and L. Hanzo, IEEE Trans. VLSI. Syst. 21, 1063 (2013).

    Article  Google Scholar 

  40. P. J. Woodard and L. Hanzo, IEEE Trans. Veh. Technol. 49, 18 (2000).

    Article  Google Scholar 

  41. J. T. Richardson and R. L. Urbanke, IEEE Trans. Inf. Theory. 47, 638 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Shokrollahi, Coding, Cryptography and Combinatorics 23, 85 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Salija.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salija, P., Yamuna, B. Optimum energy efficient error control techniques in wireless systems: a survey. J. Commun. Technol. Electron. 60, 1257–1263 (2015). https://doi.org/10.1134/S1064226915110157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226915110157

Keywords

Navigation