Skip to main content
Log in

Pattern synthesis of centre fed linear array using Taylor one parameter distribution and restricted search Particle Swarm Optimization

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this article, a new method of pattern synthesis of centre fed, equal distance linear array having single and multiple synthesis objectives has been proposed and statistically investigated. Single objective of reduced side lobe level (SLL) and first null beamwidth (FNBW) has been considered separately. Consequently, multiple objectives of beamwidth and side lobe level have been investigated. Synthesis of linear array for suitable objectives has been investigated on Taylor one parameter distribution with equal progressive phase. Excitation amplitude of each array element is taken as optimization parameter where distribution has been optimized using Particle Swarm Optimization (PSO) for achieving low SLL. Later the same has been incorporated for obtaining suitable FNBW. In our optimization algorithm conventional PSO has been modified with a restricted search PSO (RSPSO) where search space has been predefined within excitation amplitude range. PSO within the defined range searches for optimum excitation amplitude to achieve the desired objectives. In order to illustrate the effectiveness of the proposed RSPSO, simulation results of three significant instances of linear array have been presented for both even and odd number of element. The design results obtained using RSPSO have improved result than those obtained using other state of the art evolutionary algorithms like differential evolution (DE), invasive weeds optimization (IWO) and Conventional particle Swarm optimization (CPSO) in a statistically significant way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Schelkunoff, “A mathematical theory of linear arrays,” Bell Syst. Tech. J. 22, 80–107 (1943).

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Dolph, “A current distribution for broadside arrays which optimizes the relationship between beamwidth and side-lobe level,” Proc. IRE 34, 335–348 (1946).

    Article  Google Scholar 

  3. T. T. Taylor, “Design of line source antennas for narrow beamwidth and low sidelobes,” IRE Trans. Antennas Propag. 7, 16–28 (1955).

    Article  Google Scholar 

  4. R. F. Harrington, “Sidelobe Reduction by Non uniform Element Spacing,” IEEE Trans. Antennas Propag. 9, 187–192, (1961).

    Article  Google Scholar 

  5. Y. T. Lo and S. W. Lee, “A study of space tapered arrays,” IEEE Trans. Antennas Propag. 14, 22–30, (1966).

    Article  Google Scholar 

  6. R. G. Plumb, “Antenna array beam steering using time varying weights,” IEEE Trans. Aerospace Electron. Syst. 27, 861–865 (1991).

    Article  Google Scholar 

  7. A. Safaaai-Jazi, “A New Formulation for the Design of Chebyshev Arrays,” IEEE Trans. Antennas Propag. 42, 439–443 (1994).

    Article  Google Scholar 

  8. C. A. Balanis, Antenna Theory Analysis and Design, 2nd Ed. (Wiley, New York, 1997).

    Google Scholar 

  9. A. R. Simpson, G. C. Dandy, and L. J. Murphy, “Genetic algorithms compared to other techniques for pipe optimization,” J. Water Resour. Plann. Manage. 120, 423–443 (1994).

    Article  Google Scholar 

  10. Z. Lukes and Z. Raida, “Multi-objective optimization of wire antennas: genetic algorithms versus particle swarm optimization,” Radio Eng., 14(4), 91–97 (2005).

    Google Scholar 

  11. M. Peyvandi, M. Zafarani and E. Nasr, “Comparison of particle swarm optimization and the genetic algorithm in the improvement of power system stability by an SSSC-based controller,” J. Electr. Eng. Technol. 6, 182–199 (2011).

    Article  Google Scholar 

  12. R. Abdolee, V. Vakilian, and T. Abd Rahman, “Elements space and amplitude perturbation using genetic algorithm for antenna array side lobe cancellation,” Signal Process. Int. Journal (SPIJ), 2(2), 10–16 (2012).

    Article  Google Scholar 

  13. A. R. Mehrabian and C. Lucas, “A novel numerical optimization algorithm inspired from weed colonization,” Ecolog. Inf. 1, 355–366 (2006)

    Article  Google Scholar 

  14. A. R. Mallahzadeh, H. Oraizi, and Z. Davoodi-Rad, “Application of the invasive weed optimization technique for antenna configuration,” Prog. Electromagn. Res. PIER 79, 137–150 (2008).

    Article  Google Scholar 

  15. G. G. Roy and S. Das, “Design of Non-Uniform Circular Anteena Arrays Using a Modified Invasive Weed Optimization Algorithm,” IEEE Trans. Antennas Propag. 59, 110–117 (2011).

    Article  Google Scholar 

  16. R. cha-Alicano, C. D. Covarrubias-Rosales, C. Brizuela-Rodriguez, and M. Panduro-Mendoza “Differential evolution algorithm applied to side lobe level reduction on a planar array,” AEU Int. J. Electron. Commun. 61, 286–290, (2007).

    Article  Google Scholar 

  17. S. Pal, B. Y. Qu, S. Das, and P. N. Suganthan, “Optimal synthesis of linear antenna arrays with multi-objective differential evolution,” Prog. Electromagn. Res. B, 21, 87–111, (2010).

    Google Scholar 

  18. P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas and Propag. Mag., 53(1), 38–49, (2011).

    Article  Google Scholar 

  19. X. Li, M. Yin, “Optimal synthesis of linear antenna array with composite differential evolution algorithm,” Scientica Iranica, Trans. D: Comput. Sci. Eng. Electr. Eng., 19, 1780–1787 (2012).

    Article  Google Scholar 

  20. F. Zhang, W. Jia, and M. Yao, “Linear aperiodic array synthesis using differential evolution algorithm,” IEEE Antennas Wireless Propag. Lett. 12, 797–800 (2013).

    Article  Google Scholar 

  21. J. Vesterstrom and R. Thomsen, “A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems,” Congr. Evolutionary Comput. 2, 1980–1987 (2004).

    Google Scholar 

  22. M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization”, IEEE Trans. Antenna and Propag. 53, 2674–2679 (2005).

    Article  Google Scholar 

  23. K. C. Lee and J. Y. Jhang, “Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays,” J. Electromagn. Waves Appl. 20, 2001–2012, (2006).

    Article  Google Scholar 

  24. M. H. Bataienh, “On Chebyshev array design using particle swarm optimization,” J. Electromagn. Analysis Appl. 3, 213–219 (2011).

    Google Scholar 

  25. S. Chatterjee, S. Chatterjee, and D. R. Poddar, “Side lobe level reduction of a linear array using Chebyshev polynomial and particle swarm optimization,” in Proc. Int. Conf. on Communication, Circuits and Systems, Bhubaneshwar, India, Oct. 6–7, 2012 (KIIT Univ., 2012).

    Google Scholar 

  26. S. Chatterjee, S. Chatterjee, and D. R. Poddar, “Synthesis of non-uniformly excited symmetrical linear array using Chebyshev polynomial and particle swarm optimization,” in Proc. Conf. IEEE Antenna Week, Aurangabad, Maharashtra, India, June 3–7, 2013, (IEEE, New York, 2013).

    Google Scholar 

  27. S. Chatterjee, S. Chatterjee, and D. R. Poddar, “Synthesis of amplitude taper beam steered linear array using particle swarm optimization and Tschebyscheff polynomial,” in Proc. Conf. IEEE Applied Electromagnetics Conference, Bhubaneshwar, India, Dec. 18–17, 2013 (IEEE, New York, 2013).

    Google Scholar 

  28. S. Das, M. Bhattacharya, A. Sen and D. Mandal, “Linear antenna array synthesis with decreasing sidelobe and narrow beamwidth,” ACEEEE Int. J. Commun. 3(1), 10–14 (2012).

    Google Scholar 

  29. J. A. Ferreira and F. Ares, “Pattern synthesis of conformal arrays by the simulated annealing technique,” Electron. Lett. 33, 1187–1189 (1997).

    Article  Google Scholar 

  30. V. Murino, A. Trucco and C. S. Regazzoni, “Synthesis of unequally spaced arrays by simulated annealing,” IEEE Trans. on Signal Process., 44, 119–123 (1996).

    Article  Google Scholar 

  31. S. A. Ethni, B. Zahawi, D. Giaouris, and P. P. Acarnle, “Comparison of particle swarm and simulated annealing algorithms for induction motor fault identification,” in Proc. IEEE Int. Conf. on Industrial Informatics, Cardiff, UK, 2009 (IEEE, New York, 2009), p. 407.

    Google Scholar 

  32. L. Merad, F. Bendimerad and S. Meriah, “Design of linear antenna arrays for side lobe reduction using the tabu search method”, Int. Arab J. Inf. Technol. 5, 219–222 (2008).

    Google Scholar 

  33. A. Allahverdi and F. S. Al-Anzi, “A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application,” Comput. Operat. Res. 33, 1056–1080 (2006).

    Article  MATH  Google Scholar 

  34. J. Kennedy and R. Eberhart, “Particle swarm optimization”, in Proc. IEEE Int. Conf. Neural Networks, Dec., 1995, (IEEE, New York, 2009), p. 1942.

    Google Scholar 

  35. R. C. Eberhat and Y. Shi, “Particle Swarm Optimization: developments, applications and resources, evolutionary computing,” in Proc. 2001 Congress on Evolutionary Computation, Seoul, Korea, 2001, p. 81.

  36. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. on Antennas and Propag. 52, 397–407 (2004).

    Article  MathSciNet  Google Scholar 

  37. G. Venter and J. Sobieszczanski-Sobieski, “Particle swarm optimization,” AIAA J. 41, 1583–1589 (2003).

    Article  Google Scholar 

  38. A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Trans. Evolut. Comput. 8, 240–255 (2004).

    Article  Google Scholar 

  39. F. Van De Bergh and P. A. Engelbrecht, “Effects of swarm size on coopertive particle swarm optimizers,” in Proc. Conf. of GECCO-2001, San Francisco CA, 2001 (GECCO, 2001), p. 892.

    Google Scholar 

  40. Y. Shi and R. C. Eberhart, “Emperical study of particle swarm optimization,” in Proc. Conf. of the 1999 Congress of Evolutionary Computation, 1999 (New York, 1999), p. 1945.

    Google Scholar 

  41. N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementation,” IEEE Trans. Antennas and Propag., 55, 556–567 (2007).

    Article  Google Scholar 

  42. K. A. De Jong, Evolutionary Computation: A Unified Approach (MIT Press, London, England, 2006).

    Google Scholar 

  43. R. A. Fisher, Statistical Methods for Research Workers, (Oliver and Boyd, Edinburgh, 1925).

    Google Scholar 

  44. F. Wilcoxon, “Individual comparison by ranking methods,” Biometrics, 1, 80–83, (1945).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyo Chatterjee.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Chatterjee, S. Pattern synthesis of centre fed linear array using Taylor one parameter distribution and restricted search Particle Swarm Optimization. J. Commun. Technol. Electron. 59, 1112–1127 (2014). https://doi.org/10.1134/S1064226914110205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226914110205

Keywords

Navigation