Skip to main content
Log in

Increased Efficiency and Duration of Emission from Carbon Nanotubes Processed in Ammonia Plasma

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A technique for obtaining carbon nanotubes (CNTs) doped with nitrogen in ammonia plasma has been developed. In this technique, CNTs synthesized by a method excluding their doping with nitrogen are post-treated in ammonia plasma. This treatment leads to a more than fivefold increase in the concentration of nitrogen (from 0.7 to 3.6 at %), a sixfold decrease in the resistance, and a 10% decrease in the work function of CNTs, resulting in stabilization of the process of cold electron emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Bargaoui, M. Troudi, P. Bondavalli, and N. Sghaier, Diamond Relat. Mater. 84, 62 (2018). https://doi.org/10.1016/j.diamond.2018.03.011

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y. Tan, L. Wang, B. Li, Y. Ke, M. Liao, N. Xu, J. Chen, and S. Deng, Vacuum 172, 109071 (2020). https://doi.org/10.1016/j.vacuum.2019.109071

    Article  ADS  Google Scholar 

  3. S. Parveen, A. Kumar, S. Husain, and M. Husain, Phys. B (Amsterdam, Neth.) 505, 1 (2017). https://doi.org/10.1016/j.physb.2016.10.031

  4. S. V. Bulyarskiy, A. A. Dudin, A. V. Lakalin, A. P. Orlov, A. A. Pavlov, R. M. Ryazanov, and A. A. Shamanaev, Tech. Phys. 63, 894 (2018). https://doi.org/10.1134/S1063784218060099

    Article  Google Scholar 

  5. Doping of Carbon Nanotubes, Ed. by S. Bulyarskiy and A. Saurov, Ser. NanoScience and Technology (Springer Int., Cham, 2017).

  6. Z. Zhao, C. Gao, K. Ma, and Y. Lu, Appl. Surf. Sci. 504, 144380 (2020). https://doi.org/10.1016/j.apsusc.2019.144380

    Article  Google Scholar 

  7. D. G. Kvashnin, P. B. Sorokin, J. W. Bruning, and L. A. Chernozatonskii, Appl. Phys. Lett. 102, 183112 (2013). https://doi.org/10.1063/1.4804375

    Article  ADS  Google Scholar 

  8. K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B 77, 235430 (2008). https://doi.org/10.1103/PhysRevB.77.235430

    Article  ADS  Google Scholar 

  9. A. Maity, S. Das, D. Sen, and K. K. Chattopadhyay, Carbon 127, 510 (2018). https://doi.org/10.1016/j.carbon.2017.11.018

    Article  Google Scholar 

  10. D. Nawn, D. Banerjee, and K. K. Chattopadhyay, Diamond Relat. Mater. 34, 50 (2013). https://doi.org/10.1016/j.diamond.2013.02.001

    Article  ADS  Google Scholar 

  11. S. Suzuki, C. Bower, Y. Watanabe, and O. Zhou, Appl. Phys. Lett. 76, 4007 (2000). https://doi.org/10.1063/1.126849

    Article  ADS  Google Scholar 

  12. K. C. Kwon, K. S. Choi, B. J. Kim, J.-L. Lee, and S. Y. Kim, J. Phys. Chem. C 116, 26586 (2012). https://doi.org/10.1021/jp3069927

    Article  Google Scholar 

  13. S.-F. Xu, G. Yuan, C. Li, W.-H. Liu, and H. Mimura, J. Phys. Chem. c 115, 8928 (2011). https://doi.org/10.1021/jp200885m

    Article  Google Scholar 

  14. G. Zhao, Q. Zhang, H. Zhang, G. Yang, O. Zhou, and L.-C. Qin, Appl. Phys. Lett. 89, 263113 (2006). https://doi.org/10.1063/1.2420796

    Article  ADS  Google Scholar 

  15. S. V. Bulyarskiy, D. A. Bogdanova, E. P. Kitsyuk, A. V. Lakalin, A. A. Pavlov, R. M. Ryazanov, A. A. Shamanaev, and Yu. P. Shaman, Tech. Phys. Lett. 44, 432 (2018). https://doi.org/10.1134/S1063785018050164

    Article  ADS  Google Scholar 

  16. S. V. Bulyarskiy, A. A. Dudin, A. V. Lakalin, A. P. Orlov, A. A. Pavlov, R. M. Ryazanov, and A. A. Shamanaev, Charact. Appl. Nanomater. 2 (2019). https://doi.org/10.24294/can.v2i2.567

  17. A. N. Saurov and S. V. Bulyarskii, Russ. Microelectron. 46, 1 (2017). https://doi.org/10.1134/S1063739717010103

    Article  Google Scholar 

  18. D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh, Nano Lett. 11, 5401 (2011). https://doi.org/10.1021/nl2031037

    Article  ADS  Google Scholar 

  19. R. Arenal, K. March, C. P. Ewels, X. Rocquefelte, M. Kociak, A. Loiseau, and O. Stephan, Nano Lett. 14, 5509 (2014). https://doi.org/10.1021/nl501645g

    Article  ADS  Google Scholar 

  20. Z. Zhang and K. Cho, Phys. Rev. B 75, 075420 (2007). https://doi.org/10.1103/PhysRevB.75.075420

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Ministry of Education and Science of the Russian Federation (project no. 0004-2019-0003) and performed using the unique equipment of the KUTGI complex at the Institute of Nanotechnologies of Microelectronics (Moscow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bulyarskiy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Belov, V.S., Kitsyuk, E.P. et al. Increased Efficiency and Duration of Emission from Carbon Nanotubes Processed in Ammonia Plasma. Tech. Phys. Lett. 46, 996–999 (2020). https://doi.org/10.1134/S1063785020100193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020100193

Keywords:

Navigation