Skip to main content
Log in

Crystal Structure and Band Gap of Nanoscale Phases of Si Formed at Various Depths of the Near-Surface Region of SiO2

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Si nanophases and nanolayers were obtained by bombardment with Ar+ ions followed by annealing at various depths of silicon oxide. As ion energy E0 varies from 10 to 25 keV, the average depth of Si nanophase formation varies from 15 to 25 nm. It is shown that, as the sizes of Si nanophases vary from ~10 to 25 nm, band gap Eg decreases from 1.9 to 1.5 eV. For Si nanolayers, Eg is ~1.1–1.2 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. S. Demidov, A. N. Mikhaylov, A. I. Belov, M. V. Karzanova, N. E. Demidova, Yu. I. Chigirinskii, A. N. Shushunov, D. I. Tetelbaum, O. N. Gorshkov, and E. A. Evropeitsev, Phys. Solid State 53, 2415 (2011). http://journals.ioffe.ru/articles/1645.

    ADS  Google Scholar 

  2. D. G. Gromov, O. V. Pyatilova, S. V. Bulyaroskii, A. N. Belov, and A. A. Raskin, Phys. Solid State 55, 619 (2013). http://journals.ioffe.ru/articles/973.

    ADS  Google Scholar 

  3. K. Hoppe, W. R. Fahrner, D. Fink, S. Dhamodoran, A. Petrov, A. Chandra, A. Saad, F. Faupel, V. S. K. Chakravadhanula, and V. Zaporotchenko, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 1642 (2008). https://doi.org/10.1016/j.nimb.2007.12.069

    Article  Google Scholar 

  4. T. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Nat. Nanotechnol. 9, 19 (2014).

    ADS  Google Scholar 

  5. F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perriére, E. Fogarassy, A. Slaoui, and M. Froment, Phys. Rev. B 37, 6468 (1988). https://doi.org/10.1103/PhysRevB.37.6468

    Article  ADS  Google Scholar 

  6. L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, J. Appl. Phys. 87, 3829 (2000). https://doi.org/10.1063/1.372421

    Article  ADS  Google Scholar 

  7. S. Takeoka, M. Fujii, and S. Hayashi, Phys. Rev. B 62, 16820 (2000). https://doi.org/10.1103/PhysRevB.62.16820

    Article  ADS  Google Scholar 

  8. R. Krishnan, Q. Xie, J. Kulik, X. D. Wang, S. Lu, M. Molinari, Y. Gao, T. D. Krauss, and P. M. Fauchet, J. Appl. Phys. 96, 654 (2004). https://doi.org/10.1063/1.1751632

    Article  ADS  Google Scholar 

  9. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990). https://doi.org/10.1063/1.102921

    Article  ADS  Google Scholar 

  10. Yu. K. Undalov and E. I. Terukov, Semiconductors 49, 867 (2015). http://journals.ioffe.ru/articles/41958.

    ADS  Google Scholar 

  11. E. S. Ergashov, D. A. Tashmukhamedova, and B. E. Umirzakov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 480 (2017). https://doi.org/10.7868/S0207352817040084

    Article  Google Scholar 

  12. K. V. Karabeshkin, P. A. Karaseov, and A. I. Titov, Semiconductors 50, 989 (2016). http://journals.ioffe.ru/articles/43422.

    ADS  Google Scholar 

  13. M. B. Yusupjanova, D. A. Tashmukhamedova, and B. E. Umirzakov, Tech. Phys. 61, 628 (2016). http://journals.ioffe.ru/articles/42980.

    Google Scholar 

  14. B. E. Umirzakov, D. A. Tashmukhamedova, G. Kh. Allayarova, and Zh. Sh. Sodikzhanov, Tech. Phys. Lett. 45, 356 (2019). https://doi.org/10.1134/S1063785019040175

    Article  ADS  Google Scholar 

  15. Kh. Kh. Boltaev, D. A. Tashmukhamedova, and B. E. Umirzakov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 326 (2014). https://doi.org/10.7868/S0207352814010107

    Article  Google Scholar 

  16. R. Lo Savio, L. Repetto, P. Guida, E. Angeli, G. Firpo, A. Volpe, V. Ierardi, and U. Valbusa, Solid State Commun. 240, 41 (2016). https://doi.org/10.1016/j.ssc.2016.04.023

    Article  ADS  Google Scholar 

  17. E. S. Ergashov, D. A. Tashmukhamedova, and E. Rabbimov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 350 (2015). https://doi.org/10.7868/S0207352815040083

    Article  Google Scholar 

  18. B. E. Umirzakov, D. A. Tashmukhamedova, D. M. Mu-radkabilov, and Kh. Kh. Boltaev, Tech. Phys. 58, 841 (2013). http://journals.ioffe.ru/articles/10925

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tashmukhamedova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashmukhamedova, D.A., Yusupjanova, M.B., Allayarova, G.K. et al. Crystal Structure and Band Gap of Nanoscale Phases of Si Formed at Various Depths of the Near-Surface Region of SiO2 . Tech. Phys. Lett. 46, 972–975 (2020). https://doi.org/10.1134/S1063785020100144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020100144

Keywords:

Navigation