Skip to main content
Log in

A New Approach to the Experimental Study of Large Ensembles of Radioengineering Oscillators with Complex Couplings

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a new approach that allows experimentally investigating complex dynamics in large ensembles of coupled radioengineering oscillators. The approach is used to construct an analog-to-digital experimental setup for studying ensembles of oscillators with delayed feedback that implements the ability to specify an arbitrary architecture and various types of connections between oscillators. The possibility of reconstructing the complex topology of connections and parameters of all oscillators by their experimental time series is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, and V. D. Shalfeev, Stability, Structures, and Chaos in Nonlinear Synchronization Networks (World Scientific, Singapore, 1995). https://doi.org/10.1142/2412

    Book  Google Scholar 

  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Phys. Rep. 424, 175 (2006). https://doi.org/10.1016/j.physrep.2005.10.009

    Article  ADS  MathSciNet  Google Scholar 

  3. G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscillatory Networks (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-71269-5

    Book  Google Scholar 

  4. O. V. Maslennikov and V. I. Nekorkin, Phys. Usp. 60, 694 (2017). https://doi.org/10.3367/ufne.2016.10.037902

    Article  ADS  Google Scholar 

  5. P. Kundu, L. Sharma, M. Nandan, D. Ghosh, C. Hens, and P. Pal, Chaos 29, 013112 (2019). https://doi.org/10.1063/1.5051535

    Article  ADS  MathSciNet  Google Scholar 

  6. D. S. Goldobin and A. V. Dolmatova, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 27 (3), 33 (2019). https://doi.org/10.18500/0869-6632-2019-27-3-33-60

    Article  Google Scholar 

  7. L. V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, and M. Frasca, Phys. Rev. E 90, 032905 (2014). https://doi.org/10.1103/PhysRevE.90.032905

    Article  ADS  Google Scholar 

  8. E. M. E. Arumugama and M. L. Spano, Chaos 25, 013107 (2015). https://doi.org/10.1063/1.4905856

    Article  ADS  MathSciNet  Google Scholar 

  9. A. A. Temirbayev, Y. D. Nalibayev, Z. Z. Zhanabaev, V. I. Ponomarenko, and M. Rosenblum, Phys. Rev. E 87, 062917 (2013). https://doi.org/10.1103/PhysRevE.87.062917

    Article  ADS  Google Scholar 

  10. V. I. Ponomarenko, D. D. Kulminskiy, and M. D. Pro-khorov, Phys. Rev. E 96, 022209 (2017). https://doi.org/10.1103/PhysRevE.96.022209

    Article  ADS  Google Scholar 

  11. I. V. Sysoev, M. D. Prokhorov, V. I. Ponomarenko, and B. P. Bezruchko, Phys. Rev. E 89, 062911 (2014). https://doi.org/10.1103/PhysRevE.89.062911

    Article  ADS  Google Scholar 

  12. Z. Liu, J. Ma, G. Zhang, and Y. Zhang, Appl. Math. Comput. 360, 94 (2019). https://doi.org/10.1016/j.amc.2019.05.004

    Article  MathSciNet  Google Scholar 

  13. Z. Yao, J. Ma, Y. Yao, and C. Wang, Nonlin. Dyn. 96, 205 (2019). https://doi.org/10.1007/s11071-019-04784-2

    Article  Google Scholar 

  14. Y. Xu, Y. Jia, J. Ma, A. Alsaedi, and B. Ahmad, Chaos Soliton Fract 104, 435 (2017). https://doi.org/10.1016/j.chaos.2017.09.002

    Article  ADS  Google Scholar 

  15. I. A. Korneev, O. G. Shabalina, V. V. Semenov, and T. E. Vadivasova, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 26 (2), 24 (2018). https://doi.org/10.18500/0869-6632-2018-26-2-24-40

    Article  Google Scholar 

  16. V. I. Ponomarenko, D. D. Kul’minskii, and M. D. Pro-khorov, Tech. Phys. Lett. 44, 761 (2018). https://doi.org/10.1134/S1063785018090109

    Article  ADS  Google Scholar 

  17. I. V. Sysoev, V. I. Ponomarenko, D. D. Kulminskiy, and M. D. Prokhorov, Phys. Rev. E 94, 052207 (2016). https://doi.org/10.1103/PhysRevE.94.052207

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the President of the Russian Federation (project no. MK-1199.2019.8, design of the experimental setup), as well as by the Russian Foundation for Basic Research (project no. 19-02-00071, research and reconstruction of ensembles of oscillators with delay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Kulminskiy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulminskiy, D.D., Ponomarenko, V.I., Sysoev, I.V. et al. A New Approach to the Experimental Study of Large Ensembles of Radioengineering Oscillators with Complex Couplings. Tech. Phys. Lett. 46, 175–178 (2020). https://doi.org/10.1134/S1063785020020236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020020236

Keywords:

Navigation