Skip to main content
Log in

Deep 3D X-ray Lithography Based on High-Contrast Resist Layers

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

In classical X-ray lithography, the mask and resist layer are arranged perpendicular to the incident X-ray beam. Being absorbed in the resist layer, the X-ray beam induces a response in the form corresponding to its cross section. However, using a tilt and rotation of the mask/resist and sequential repeated exposures, it is possible to create three-dimensional forms that are accurate to within less than a micron. New approaches to the creation of 3D microstructures by deep X-ray lithography are described, which can ensure the formation of relatively large arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Domel, M. Saadat, J. Weaver, H. Haj-Hariri, K. Bertoldi, and G. Lauder, J. R. Soc. Interface 15, 20170828 (2018).

    Article  Google Scholar 

  2. K. Autumn, Y. Liang, S. Hsieh, W. Zesch, W. Chan, T. Kenny, R. Fearing, and R. Full, Nature (London, U.K.) 405, 681 (2000).

    Article  ADS  Google Scholar 

  3. Y. Lu, Y. Yang, J. Guest, and A. Srivastava, Sci. Rep. 7, 43407 (2017).

    Article  ADS  Google Scholar 

  4. A. Bertsch and P. Renaud, Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications, Ed. by T. Baldacchini (Elsevier, Amsterdam, 2015), p. 20.

    Google Scholar 

  5. G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, Appl. Phys. Lett. 71, 1441 (1997).

    Article  ADS  Google Scholar 

  6. M. Horade and S. Sugiyama, Microsyst. Technol. 16, 1331 (2010).

    Article  Google Scholar 

  7. D. L. Spears and H. I. Smith, Electron. Lett. 8, 102 (1972).

    Article  Google Scholar 

  8. LIGA and Its Applications, Advanced Micro and Nanosystems, Ed. by V. Saile, U. Wallrabe, O. Tabata, and J. Korvink (Wiley-VCH, Weinheim, 2009), Vol. 7.

    Google Scholar 

  9. V. E. Asadchikov, S. A. Bedin, A. B. Vasil’ev, Yu. V. Grigor’ev, and V. P. Naz’mov, Tech. Phys. Lett. 45, 232 (2019).

    Article  ADS  Google Scholar 

  10. M. Simon, E. Reznikova, V. Nazmov, A. Last, and W. Jark, Proc. SPIE 7077, 70771Q (2008). https://doi.org/10.1117/12.795423

    Article  ADS  Google Scholar 

  11. S. M. Fedorov, Cand. Sci. (Voronezh State Tech. Univ., Voronezh, 2013).

    Google Scholar 

  12. D. Kunka, J. Mohr, V. Nazmov, J. Meiser, P. Meyer, M. Amberger, F. Koch, J. Schulz, M. Walter, T. Duttenhofer, A. Voigt, G. Ahrens, and G. Grützner, Microsyst. Technol. 20, 2023 (2014).

    Article  Google Scholar 

  13. B. G. Goldenberg, A. G. Lemzyakov, A. G. Zelinsky, V. P. Nazmov, and V. F. Pindyurin, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 10, 92 (2016).

    Article  Google Scholar 

  14. C. Schroer, B. Benner, T. Günzler, M. Kuhlmann, C. Zimprich, B. Lengeler, C. Rau, T. Weitkamp, A. Snigirev, I. Snigireva, and J. Appenzeller, Rev. Sci. Instrum. 73, 1640 (2002).

    Article  ADS  Google Scholar 

  15. A. Bourdillon, C. Boothroyd, G. Williams, and Y. Vladimirsky, J. Phys. D: Appl. Phys. 36, 2471 (2003).

    Article  ADS  Google Scholar 

  16. K. A. Valiev, Submicron Lithography Physics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  17. T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, and W. B. Carter, Science (Washington, DC, U. S.) 334, 962 (2011). https://doi.org/10.1126/science.1211649

    Article  ADS  Google Scholar 

  18. V. Naz’mov, M. Berger, and S. Heissler, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 1023 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Investigations related to the irradiation of samples were performed using infrastructure of the Shared-Use Center “Siberian Synchrotron and Terahertz Radiation Center (SSTRC)” based on the VEPP-3 storage ring at the Budker Institute of Nuclear Physics (Novosibirsk).

Funding

This work was supported in part by the Russian Foundation for Basic Research and the Government of Novosibirsk Region, project. no. 19-42-540014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Naz’mov.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz’mov, V.P. Deep 3D X-ray Lithography Based on High-Contrast Resist Layers. Tech. Phys. Lett. 45, 906–908 (2019). https://doi.org/10.1134/S1063785019090256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019090256

Keywords:

Navigation