Skip to main content
Log in

Photoresponse of Optical Sensors Based on Transition Metal Dichalcogenides: Influence of Thickness on Spectral Characteristics

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Prototype field-effect transistors based on solid solutions of transition metal dichalcogenides (TMDs) have been manufactured, and their spectral characteristics were studied using the photocurrent spectroscopy technique. Results of theoretical estimation of the total optical absorbance of two-dimensional (2D) TMD-based semiconductors of various thicknesses are presented as dependent on the light wavelength with allowance for the multiray interference. It is established that the interference effect significantly contributes to the resulting shapes of spectral characteristics of these optical sensors with variable thickness of TMD-based photosensitive layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. von Son Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, et al., Adv. Mater. 26, 1399 (2014).

    Article  Google Scholar 

  2. J. Yao, Z. Zheng, and G. Yang, ACS Appl. Mater. Interfaces 8, 12915 (2016).

    Article  Google Scholar 

  3. S. Butun, S. Tongay, and K. Aydin, Nano Lett. 15, 2700 (2015).

    Article  ADS  Google Scholar 

  4. S. D. Lavrov, A. P. Shestakova, E. D. Mishina, Yu. R. Efimenkov, and A. S. Sigov, Semiconductors 52, 771 (2018).

    Article  ADS  Google Scholar 

  5. N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, J. Li, Sci. Rep. 4, 5209 (2015).

    Article  Google Scholar 

  6. S. D. Lavrov, A. P. Shestakova, A. Yu. Avdizhiyan, and E. D. Mishina, Tech. Phys. Lett. 44, 1008 (2018).

    Article  ADS  Google Scholar 

  7. K. A. Brekhov, K. A. Grishunin, N. A. Ilyin, A. P. Shestakova, S. D. Lavrov, and E. D. Mishina, Tech. Phys. Lett. 43, 1112 (2017).

    Article  ADS  Google Scholar 

  8. J. Huang, W. Wang, Q. Fu, L. Yang, K. Zhang, J. Zhang, and B. Xiang, Nanotecnology 27, 13LT01 (2016).

  9. R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, J. Phys.: Condens. Matter 27, 313201 (2015).

    ADS  Google Scholar 

  10. A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, Sci. Rep. 4, 6608 (2015).

    Article  Google Scholar 

  11. C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, Appl. Phys. Lett. 104, 103114 (2014).

    Article  ADS  Google Scholar 

  12. Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, ACS Nano 8, 2970 (2014).

    Article  Google Scholar 

  13. A. Molina-Sánchez, K. Hummer, and L. Wirtz, Surf. Sci. Rep. 70, 554 (2015).

    Article  ADS  Google Scholar 

  14. G. Plechinger, J. Mann, E. Preciado, D. Barroso, A. Nguyen, J. Eroms, C. Schüller, L. Bartels, and T. Korn, Semicond. Sci. Technol. 29, 064008 (2014).

    Article  ADS  Google Scholar 

  15. M. Amani, R. A. Burke, X. Ji, P. Zhao, D.-H. Lien, P. Taheri, G. H. Ahn, D. Kirya, J. W. Ager, E. Yablonovitch, J. Kong, M. Dubey, and A. Javey, ACS Nano 10, 6535 (2016).

    Article  Google Scholar 

  16. S. D. Lavrov, Ros. Tekhnol. Zh. 4 (4), 3 (2016).

    Google Scholar 

  17. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research (projects nos. 18-32-00831 and 18-32-20047) and the Ministry of Education and Science of the Russian Federation (state order no. 3.7335.2017/9.10). Investigations were performed using instrumentation of the Center of Collective Equipment Use of the Moscow Institute of Radio Engineering, Electronics, and Automation, Russian Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Avdizhiyan.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdizhiyan, A.Y., Lavrov, S.D., Kudryavtsev, A.V. et al. Photoresponse of Optical Sensors Based on Transition Metal Dichalcogenides: Influence of Thickness on Spectral Characteristics. Tech. Phys. Lett. 45, 625–627 (2019). https://doi.org/10.1134/S106378501906018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378501906018X

Keywords:

Navigation