Skip to main content
Log in

An experimental study of the flow of subsonic flat mini and micro air jets

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We have experimentally studied subsonic submerged air jets emitted from flat mini and micro nozzles with characteristic dimensions from 22 to 600 μm in a range of Reynolds numbers 70–2600. The point of laminar-turbulent transition (jet penetration range) was determined using the flow visualization technique. It is established that the penetration range of micro jets can reach 100–300 nozzle calibers. The Reynolds number for the transition to turbulence in flat mini and micro jets reaches high values (1000–2600), which are two to three orders of magnitude greater than the Reynolds numbers for the loss of stability (3–10). Available experimental data are summarized and generalized based on the Reynolds number determined for the jet penetration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Alvi, H. Lou, C. Shih, et al., J. Fluid Mech. 613, 55 (2008).

    ADS  MATH  Google Scholar 

  2. D. Koller-Milojevic and W. Schneider, Fluid Dyn. Res. 12(6), 307 (1993).

    Article  ADS  Google Scholar 

  3. Turbulent Mixing, Ed. by G. N. Abramovich (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  4. C. M. Ho and P. Huerre, Ann. Rev. Fluid Mech. 16, 365 (1984).

    Article  ADS  Google Scholar 

  5. V. V. Lemanov, V. V. Terekhov, K. A. Sharov, and A. A. Shumeiko, Tech. Phys. Lett. 39(5), 421 (2013).

    Article  ADS  Google Scholar 

  6. Chie Gau, C. H. Shen, and Z. B. Wang, Phys. Fluids 21, 092001 (2009).

    Article  ADS  Google Scholar 

  7. V. V. Kozlov, G. R. Grek, Yu. A. Litvinenko, et al., Vest. Novosib. Gos. Univ. 5(2), 28 (2010) [in Russian].

    Google Scholar 

  8. M. S. Krivokorytov, V. V. Golub, and I. A. Moralev, Tech. Phys. Lett. 39(9), 814 (2013).

    Article  ADS  Google Scholar 

  9. V. M. Aniskin, D. A. Buntin, A. A. Maslov, et al., Tech. Phys. 57(2), 174 (2012).

    Article  Google Scholar 

  10. A. Lozano, B. Yip, and R. K. Hanson, Exp. Fluids 13(6), 369 (1992).

    Article  Google Scholar 

  11. G. K. Batchelor and A. E. Gill, J. Fluid Mech. 14, 529 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. V. S. Avduevskii, A. V. Ivanov, I. M. Karpman, et al., Sov. Phys. Dokl. 16(1), 156 (1971).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lemanov.

Additional information

Original Russian Text © V.M. Aniskin, V.V. Lemanov, N.A. Maslov, K.A. Mukhin, V.I. Terekhov, K.A. Sharov, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 1, pp. 94–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aniskin, V.M., Lemanov, V.V., Maslov, N.A. et al. An experimental study of the flow of subsonic flat mini and micro air jets. Tech. Phys. Lett. 41, 46–49 (2015). https://doi.org/10.1134/S1063785015010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785015010034

Keywords

Navigation