Skip to main content
Log in

Effect of the Spatial Distribution of Plasma Parameters on the Operation of a Fusion Reactor

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The operation of a fusion reactor on a fuel alternative to the D–T (D–D, Cat–DD, D–3He, p11B, and p6Li) requires a higher fuel mixture temperature and a longer energy confinement time in the plasma. It is shown that for a fixed fusion reaction power, an increase in the plasma parameters peaking reduces the power required for additional plasma heating. In addition, the peaking of the plasma parameters reduces the radiation loss in the plasma. All this softens the requirements to the operation conditions of fusion reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. I. N. Golovin and B. B. Kadomtsev, At. Energ. 81 (5), 364 (1996).

  2. M. Ni, Y. Wang, B. Yuan, J. Jiang, and Y. Wu, Fusion Eng. Des. 88, 2422 (2013). https://doi.org/10.1016/j.fusengdes.2013.05.043

    Article  Google Scholar 

  3. M. Kovari, M. Coleman, I. Cristescu, and R. Smith, Nucl. Fusion 58, 026010 (2018). https://doi.org/10.1088/1741-4326/aa9d25

  4. Yu. V. Gott, Plasma Phys. Rep. 47, 781 (2021). https://doi.org/10.1134/S1063780X21080043

    Article  ADS  Google Scholar 

  5. P. E. Stott, Plasma Phys. Controlled Fusion 47, 1305 (2005). https://doi.org/10.1088/0741-3335/47/8/011

    Article  ADS  Google Scholar 

  6. A. Yu. Chirkov, J. Fusion Energy 32, 208 (2013). https://doi.org/10.1007/s10894-012-9554-0

    Article  ADS  Google Scholar 

  7. D. C. Baxter, A. E. Dabiri, D. Dobrott, J. E. Glancy, H. Gurol, W. K. Hagan, J. B. McBride, S. Tamor, and R. N. Cherdack, Fusion Sci. Technol. 4, 246 (1983). https://doi.org/10.13182/FST83-A22876

    Article  Google Scholar 

  8. K. Evans, Jr., C. C. Baker, J. N. Brooks, R. G. Clemmer, D. A. Ehst, P. A. Finn, H. Herman, J. Jung, R. F. Mattas, B. Misra, D. L. Smith, H. C. Stevens, L. R. Turner, R. B. Wehrle, K. M. Barry, et al., Fusion Sci. Technol. 4, 226 (1983). https://doi.org/10.13182/FST4-2P1-226

    Article  Google Scholar 

  9. A. Yu. Chirkov and V. I. Khvesyuk, Fusion Technol. 39, 406 (2001). https://doi.org/10.13182/FST01-A11963491

    Article  ADS  Google Scholar 

  10. S. V. Ryzhkov, Fusion Sci. Technol. 55, 157 (2009). https://doi.org/10.13182/FST09-A7004

    Article  ADS  Google Scholar 

  11. M. H. Redi, S. J. Zweben, and G. Bateman, Fusion Technol. 13, 57 (1988). https://doi.org/10.13182/FST88-A25085

    Article  ADS  Google Scholar 

  12. V. P. Pastukhov and D. V. Smirnov, JETP Lett. 114, 208 (2021). https://doi.org/10.1134/S0021364021160086

    Article  ADS  Google Scholar 

  13. J. D. Tubbing, B. Balrt, D. V. Bartlett, C. D. Challis, S. Corti, R. D. Gill, C. Gormezano, C. W. Gowers, M. Von Hellermann, M. Hugon, J. J. Jacquinot, H. Jaeckel, P. Kupschus, K. Lawson, H. Morsi, et al., Nucl. Fusion 31 (5), 839 (1991). https://doi.org/10.1088/0029-5515/31/5/003

    Article  Google Scholar 

  14. D. R. Mikkelsen, K. M. McGuire, G. L. Schmidt, and S. J. Zweben, Nucl. Fusion 35, 521 (1995). https://doi.org/10.1088/0029-5515/35/5/I03

    Article  ADS  Google Scholar 

  15. K. Ida, S.-I. Itoh, K. Itoh, S. Hidekuma, Y. Miura, H. Kawashima, M. Mori, T. Matsuda, N. Suzyki, H. Tamai, and T. Yamauchi, Phys. Rev. Lett. 68, 182 (1992). https://doi.org/10.1103/PhysRevLett.68.182

    Article  ADS  Google Scholar 

  16. Yu. D. Pavlov, Yu. N. Dnestrovskij, A. A. Borshegovskij, V. V. Chistyakov, A. Yu. Dnestrovskij, M. M. Dremin, Yu. V. Gott, S. A. Grashin, E. P. Gorbunov, V. A. Zhuravlev, L. N. Khimchenko, A. V. Khramenkov, A. Ya. Kislov, S. V. Krylov, V. A. Krupin, et al., Proc. 28th EPS Conf. Controlled Fusion and Plasma Physics (Portugal, Madeira, Funchal, June 18–22, 2001), P4-020, ECA V.25A, 1409.

  17. F. Wising, D. Anderson, M. Lisak, and M. Benda, Fusion Technol. 25, 290 (1994). https://doi.org/10.13182/FST94-A3

    Article  ADS  Google Scholar 

  18. K. M. McGuire, H. Adler, P. Alling, C. Ancher, H. Anderson, J. L. Anderson, J. W. Anderson, V. Arunasalam, G. Ascione, D. Ashcroft, C. W. Barnes, G. Barnes, S. Batha, G. Bateman, M. Beer, et al., Phys. Plasmas 2, 2176 (1995). https://doi.org/10.1063/1.871303

    Article  ADS  Google Scholar 

  19. J. Kesner and R. W. Conn, Nucl. Fusion 16, 397 (1976). https://doi.org/10.1088/0029-5515/16/3/002

    Article  ADS  Google Scholar 

  20. B. Khosrowpour and N. Nassiri-Mofakhan, J. Fusion Energy 35, 513 (2016). https://doi.org/10.1007/s10894-016-0084-z

    Article  Google Scholar 

  21. T. Simko and M. Gray, World Future Rev. 6, 158 (2014). https://doi.org/10.1177/1946756714536142

    Article  Google Scholar 

  22. L. J. Wittenberg, E. N. Cameron, G. L. Kulcinski, S. H. Ott, J. F. Santarius, G. I. Sviatoslavsky, I. N. Sviatoslavsky, and H. E. Thompson, Fusion Technol. 12, 2230 (1992). https://doi.org/10.13182/FST92-A29718

    Article  ADS  Google Scholar 

  23. G. L. Kulcinski and H. Y. Schmitt, Proc. 2nd Annual Lunar Development Conf. “Return to the Moon II” (Las Vegas, July 20–21 July, 2000).

  24. G. L. Kulcinski, R. P. Ashley, J. F. Santarius, G. Piefer, and K. Murali, Proc. 4th Int. Conf. on the Exploration and Utilisation of the Moon (ICEUM-4), July 10–14, 2000, ESA SP-462.

  25. J. Bahmani, Int. J. Hydrogen Energy 45, 16672 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.107

    Article  Google Scholar 

  26. S. V. Putvinski, D. D. Ryutov, and P. N. Yushmanov, Nucl. Fusion 59, 076018 (2019). https://doi.org/10.1088/1741-4326/ab1a60

  27. J. Bahmani, B. Eslami, and F. M. Jafari, Int. J. Phys. Sci. 12, 194 (2017). https://doi.org/10.5897/IJPS2017.4639

    Article  Google Scholar 

  28. A. B. Kukushkin, P. V. Minashin, and V. S. Neverov, Proc. 22nd IAEA Fussion Energy Conf. (Geneva, 2008), TH/P3-10.

  29. M. Mahdavi and T. Koohrokhi, Pramana 74, 377 (2010). https://doi.org/10.1007/s12043-010-0034-7

    Article  ADS  Google Scholar 

  30. F. Albajar, M. Bornatici, and F. Engelmann, Nucl. Fusion 49, 115017 (2009). https://doi.org/10.1088/0029-5515/49/11/116017

  31. Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya, Nucl. Phys. A 918, 61 (2013). https://doi.org/10.1016/j.nuclphysa.2013.09.007

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are obliged to express their gratitude of A.B. Kukushkin, P.V. Minashin, V.P. Pastukhov, and A.Yu. Chirkov for useful advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Gott.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

For the main five fusion reactions (D–T, D–D, Cat–DD, D–3He, and 3He–3He), the rate coefficient of the reaction with an error that does not exceed 10% as a rule for temperatures 0.086 keV < T < 862 keV can be written in form

$$\langle \sigma \nu \rangle {{10}^{{18}}} = {{10}^{u}}\,\,{\text{c}}{{{\text{m}}}^{3}}{\text{/s}}{\text{,}}$$
(A.1)

where

$$u = \sum\limits_{i = 1}^3 {{{a}_{i}}{{\theta }^{i}},} $$
(A.2)

θ = log10T, temperature T is expressed in kiloelectronvolts, and log10 is the decimal logarithm. Angle brackets indicate averaging over the Maxwell distribution. For the D–T reaction, formula (A.1) holds up to energy of 500 keV.

The values of coefficients ai are given in Table 1.

Table 1. Values of coefficients ai for formula (A.2)

The approximation was performed using the results from [31].

The power density released in the aforementioned reactions can be written in form

$$W = \alpha n_{e}^{2}\langle \sigma \nu \rangle \,\,{\text{W/c}}{{{\text{m}}}^{3}}.$$
(A.3)

Here, electron concentration ne is expressed in the units of 1014 cm–3, and the rate coefficient is given in the units of 1018 cm3/s. The values of coefficient α are given in Table 2.

Table 2. Values of coefficient α for formula (A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gott, Y.V., Yurchenko, E.I. Effect of the Spatial Distribution of Plasma Parameters on the Operation of a Fusion Reactor. Tech. Phys. 67, 683–691 (2022). https://doi.org/10.1134/S1063784222100012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222100012

Keywords:

Navigation