Skip to main content
Log in

Kinetics of γα Transformation of Retained Austenite in Maraging Steel after Double Annealing at Subzero Temperatures and Loads

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

This paper studies the influence of mechanical tensile loads in the range of 0–300 MPa on the nature of γ → α transformation in cold-rolled maraging steel in the temperature range of –20…–60°С. Based on the kinetic curves of the electrical resistance, critical temperatures Mbeg and Mend were determined and the diagrams of the isothermal decomposition of supercooled retained austenite annealed in the two-phase region after two cycles at a temperature of 650°C for 6 h were plotted. It has been established that mechanical loads in the range of 20–300 MPa affect the parameters of the gamma-alpha transformation ambiguously, shifting the isothermal diagrams in temperature and time and significantly changing the stability characteristics of austenite. Resistance of austenite to supercooling Ts varies from –25 to –55°С, incubation period τinc from 2 to 8 min, and decay period τdec with two extremes (50 and 100 MPa) from 51 to 518 min depending on the load level. The recorded maximum duration of the annealing austenite decomposition at low loads (20–100 MPa) is explained by the structural and chemical inhomogeneity of the phases, as well as the stress level of the initial state of the samples under study. The threshold stress is determined, loading up to which leads to a decrease by ∼15°С in the beginning of the γ → α transformation in the interval of subzero temperatures (from –40° to –55°C). It can be assumed that the shift of the diagrams to the range of low temperatures is due to a change in the mechanism of the γ → α transformation. It is shown that cyclic heat treatment in the two-phase region at a temperature of 650°C for 6 h at loads up to 100 MPa delays the isothermal decomposition of supercooled retained austenite in the steel under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. 
Fig. 2. 

Similar content being viewed by others

REFERENCES

  1. E. S. Makhnev, USSR Inventor’s Certificate No. 333204 (1972).

  2. Ya. M. Potak, High-Strength Steels (Metallurgiya, Moscow, 1972) [in Russian].

    Google Scholar 

  3. B. A. Apaev, B. I. Voronenko, and S. A. Madyanov, Fiz. Met. Metalloved. 28 (4), 710 (1969).

    Google Scholar 

  4. E. S. Makhnev and T. M. Makhneva, “Inverse martensitic transformation in steel VNS-2USh,” in Proc. Int. Conf. “Martensitic Transformations in Metals and Alloys” (Naukova Dumka, Kiev, 1979), p. 180 [in Russian].

  5. V. M. Kardonskii, Fiz. Met. Metalloved. 40 (5), 1008 (1975).

    Google Scholar 

  6. E. S. Makhnev, V. M. Kondratov, V. A. Morozov, A. I. Skvortsov, and T. M. Gapeka, Probl. Prochnosti, No. 2, 79 (1977).

  7. Yu. R. Nemirovskii, T. A. Doroshevich, and M. R. Nemirovskii, Fiz. Met. Metalloved. 68 (4), 746 (1989).

    Google Scholar 

  8. B. A. Potekhin, S. A. Tyutyukov, Yu. R. Nemirovskii, and Yu. I. Pashkov, Fiz. Met. Metalloved. 48 (1), 182 (1979).

    Google Scholar 

  9. V. M. Schastlivtsev, Yu. V. Kaletina, I. L. Yakovleva, et al., Fiz. Met. Metalloved. 67 (2), 365 (1989).

    Google Scholar 

  10. E. S. Makhnev, Doctoral Dissertation in Engineering (Izhevsk, 1986).

  11. T. M. Makhneva, S. F. Savchenkova, E. S. Makhnev, and M. V. Savchenkova, Met. Sci. Heat Treat. 47, 232 (2005). https://doi.org/10.1007/s11041-005-0057-8

    Article  ADS  Google Scholar 

  12. T. M. Makhneva, Khim. Fiz. Mezoskop. 15 (1), 91 (2013).

    Google Scholar 

  13. V. V. Sagaradze, N. V. Kataeva, I. G. Kabanova, V. A. Zavalishin, A. I. Valiullin, and M. F. Klyukina, Phys. Met. Metallogr. 115 (7), 661 (2014). https://doi.org/10.1134/S0031918X14070084

    Article  ADS  Google Scholar 

  14. V. G. Lifshits, V. S. Kraposhin, and Ya. L. Linetskii, Physical Properties of Metals and Alloys, 2nd ed. (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  15. T. M. Makhneva, E. S. Makhnev, S. F. Savchenkova, and M. V. Savchenkova, Zavod. Lab. Diagn. Mater. 68 (11), 33 (2002).

    Google Scholar 

  16. B. A. Potekhin, Fiz. Met. Metalloved. 48, 1058 (1979).

    Google Scholar 

  17. V. P. Korobeinikov, B. A. Potekhin, and B. N. P’yankov, Fiz. Met. Metalloved. 45, 1077 (1978).

    Google Scholar 

  18. S. O. Suvorova and V. I. Sarrak, “Mechanical instability of austenite in the pre-martensitic state,” in Proc. Int. Conf. “Martensitic Transformations in Metals and Alloys” (ICOMAT) (Naukova Dumka, Kiev, 1979), p. 62 [in Russian].

  19. V. P. Korobeinikov, I. N. Bogachev, and B. N. P’yankov, “Investigation of the pre-martensitic state using orientation effects in the interaction of charged particles with single crystals,” in Proc. Int. Conf. “Martensitic Transformations” (ICOMAT-77) (Naukova Dumka, Kiev, 1978), p. 54 [in Russian].

  20. V. G. Pushin, R. R. Romanova, and N. N. Buinov, “Pre-martensitic instability before transformations in iron–nickel alloys,” in Proc. Int. Conf. “Martensitic Transformations” (ICOMAT-77) (Naukova Dumka, Kiev, 1978), p. 47 [in Russian].

  21. M. D. Perkas and V. M. Kardonsky, High-Strength Maraging Steels (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  22. I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  23. E. S. Makhnev and T. M. Gapeka, Tekhnol. Legk. Splavov, No. 4, 114 (1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Makhneva.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhneva, T.M., Dementyev, V.B. & Sukhikh, A.A. Kinetics of γα Transformation of Retained Austenite in Maraging Steel after Double Annealing at Subzero Temperatures and Loads. Tech. Phys. 67, 588–592 (2022). https://doi.org/10.1134/S1063784222080059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222080059

Keywords:

Navigation