Skip to main content
Log in

Investigation of the Effect of a Small Addition of ZrO2 on the Density and Growth of Grains of Fine-Grained Aluminum Oxide

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The effect of an additive of 0.5 wt % of zirconium oxide on the kinetics of electropulse plasma sintering (EPS) of submicron and micron α-Al2O3 powders. Al2O3–0.5% ZrO2 compositions were obtained by mixing Al2O3 powders in a planetary mill with grinding media from stabilized zirconium oxide. The activation energy of EPS was estimated using the Yang–Cutler model. It is shown that the density and average grain size in ceramics sintered from submicron Al2O3 powders are significantly affected by the nonequilibrium state of the interfaces formed as a result of the transformation of the amorphous phase present on the particle surface during EPS. The grain size and density of ceramics Al2O3–0.5% ZrO2, sintered from micron powders are significantly affected by the coalescence of ZrO2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. G. Evans and T. G. Langdon, Structural Ceramics (Pergamon, Oxford, 1976).

    Google Scholar 

  2. V. Ya. Shevchenko and S. M. Barinov, Technical Ceramics (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  3. A. Z. A. Azhar, M. M. Ratman, and Z. A. Ahmad, J. Alloys Compd. 478 (1–2), 608 (2009). https://doi.org/10.1016/j.jallcom.2008.11.156

    Article  Google Scholar 

  4. J. Chai, Y. Zhu, T. Shen, Y. Liu, L. Niu, S. Li, P. Jin, M. Cui, and Z. Wang, Ceram. Int. 46 (17), 27143 (2020). https://doi.org/10.1016/j.ceramint.2020.07.194

    Article  Google Scholar 

  5. A. Ruys, Alumina Ceramics Biomedical and Clinical Applications (Woodhead, Cambridge, 2019).

    Google Scholar 

  6. A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S.  S. Semenov, Ceramics for Machine Engineering (Nauchtekhlitizdat, Moscow, 2003) [in Russian].

    Google Scholar 

  7. S. Meir, S. Kalabukhov, and S. Hayun, Ceram. Int. 40 (8), 1287 (2014). https://doi.org/10.1016/j.ceramint.2014.04.059

    Article  Google Scholar 

  8. D. Jiang, D. M. Hulbert, J. D. Kuntz, U. Anselmi-Tamburini, and A. K. Mukherjee, Mater. Sci. Eng., A 463 (1–2), 89 (2007). https://doi.org/10.1016/j.msea.2006.07.163

    Article  Google Scholar 

  9. M. Tokita, Ceramics 4 (2), 160 (2021). https://doi.org/10.3390/ceramics4020014

    Article  Google Scholar 

  10. Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, and S.-L. Li, Mater. Des. 191, 108662 (2020). https://doi.org/10.1016/j.matdes.2020.108662

  11. D. J. Green, J. Am. Ceram. Soc. 65 (12), 610 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb09939.x

    Article  Google Scholar 

  12. F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 67 (3), 164 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19734.x

    Article  Google Scholar 

  13. M. S. Boldin, A. A. Popov, E. A. Lantsev, A. V. Nokhrin, and V. N. Chuvil’deev, Materials 15 (6), 2167 (2022). https://doi.org/10.3390/ma15062167

    Article  ADS  Google Scholar 

  14. F. A. T. Guimarães, K. L. Silva, V. Trombini, J. J. Pierri, J. A. Rodrigues, R. Tomasi, and E. M. J. A. Pallone, Ceram. Int. 35 (2), 741 (2009). https://doi.org/10.1016/j.ceramint.2008.02.002

    Article  Google Scholar 

  15. V. N. Chuvil’deev, M. S. Boldin, Ya. G. Dyatlova, V. I. Rumyantsev, and S. S. Ordan’yan, Russ. J. Inorg. Chem. 60 (8), 987 (2015). https://doi.org/10.1134/S0036023615080057

    Article  Google Scholar 

  16. M. N. Rahaman, Ceramic Processing and Sintering (Marcel Dekker, New York, 2003).

    Google Scholar 

  17. E. A. Olevsky and L. Froyen, J. Am. Ceram. Soc. 92 (s1), S122 (2009). https://doi.org/10.1111/j.1551-2916.2008.02705.x

    Article  Google Scholar 

  18. W. S. Young and I. B. Culter, J. Am. Ceram. Soc. 53 (12), 659 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12036.x

    Article  Google Scholar 

  19. E. A. Lantsev, N. V. Malekhonova, Yu. V. Tsvetkov, Yu. V. Blagoveshchensky, V. N. Chuvil’deev, A. V. Nokhrin, M. S. Boldin, P. V. Andreev, K. E. Smetanina, and N. V. Isaeva, Inorg. Mater.: Appl. Res. 12 (3), 650 (2021). https://doi.org/10.1134/S2075113321030242

    Article  Google Scholar 

  20. H. J. Frost and M. F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, Oxford, 1982).

    Google Scholar 

  21. A. E. Paladino and R. L. Coble, J. Am. Ceram. Soc. 46 (3), 133 (1963). https://doi.org/10.1111/j.1151-2916.1963.tb11696.x

    Article  Google Scholar 

  22. V. N. Chuvil’deev and E. S. Smirnova, Phys. Solid State 58 (7), 1487 (2016). https://doi.org/10.1134/S1063783416070118

    Article  ADS  Google Scholar 

  23. V. I. Betekhtin, A. G. Kadomtsev, A. Yu. Kipyatkova, and A. M. Glezer, Phys. Solid State 40 (1), 74 (1998). https://doi.org/10.1134/1.1130237

    Article  ADS  Google Scholar 

  24. V. N. Chuvil’deev, Nonequilibrium Grains Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  25. J. Wang and R. Raj, J. Am. Ceram. Soc. 74 (8), 1959 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07815.x

    Article  Google Scholar 

  26. T.-S. Yeh and M. D. Sacks, J. Am. Ceram. Soc. 71 (12), C-484 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05812.x

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study by transmission electron microscopy was performed on the equipment of the Core Facility Center “Materials Science and Metallurgy” of National University of Science and Technology “MISiS”, project no. 075-15-2021-696 of the Ministry of Education and Science of Russia.

Funding

This work was supported by the Russian Science Foundation, grant no. 20-73-10113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Boldin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldin, M.S., Popov, A.A., Murashov, A.A. et al. Investigation of the Effect of a Small Addition of ZrO2 on the Density and Growth of Grains of Fine-Grained Aluminum Oxide. Tech. Phys. 67, 570–580 (2022). https://doi.org/10.1134/S1063784222080035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222080035

Keywords:

Navigation