Skip to main content
Log in

Comparison of Delivery Systems for Chemotherapy Preparation Doxorubicin using Electron Microscopic and Hydrodynamic Methods

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Structural and functional characteristics of various systems for delivery of antitumor preparation doxorubicin were compared. Two types of delivery systems were studied: submicron porous calcium carbonate cores coated with a polyanion (sodium dextran sulfate) and nanoparticles based on random amphiphilic copolymers of different amino acids. Scanning and transmission electron microscopy, dynamic light scattering were used to determine sizes of both delivery systems and electrokinetic potentials of their surfaces. Toxicity of delivery systems containing from 0 to 5 µg/mL of doxorubicin against MCF7 tumor cells was determined from the results of measurements of electric impedance of microsensors in the unit containing the cells and the tested delivery systems. Time-concentration profiles of doxorubicin in rat blood plasma after intraperitoneal administration of the tested delivery systems were obtained by high performance liquid chromatography. These profiles indicate considerable differences in the processes of penetration of carriers of various sizes into bloodstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. F. Bray, J. Ferlay, I. Soerjomataram, P. Siegel, L. A. Torre, and A. Jemal, Ca-Cancer J. Clin. 68, 394 (2018). https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. I. S. Basin, Probl. Pract. Oncol. 9, 216 (2008).

    Google Scholar 

  3. B. Gao, J. Luo, Y. Liu, S. Su, S. Fu, X. Yang, and B. Li, Int. J. Nanomed. 6, 4073 (2021). https://doi.org/10.2147/IJN.S308057

    Article  Google Scholar 

  4. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, Pharmacol. Rev. 56, 185 (2004). https://doi.org/10.1124/pr.56.2.6

    Article  Google Scholar 

  5. B. Matyszewska, Surf. Innovations 2, 201 (2014). https://doi.org/10.1680/si.13.00040

    Article  Google Scholar 

  6. Y. Jiang, Y. Zhou, C. Zhang, and T. Fang, Int. J. Nanomed. 15, 3319 (2020). https://doi.org/10.2147/IJN.S249144

    Article  Google Scholar 

  7. U. Ruman, S. Fakurazi, M. Masarudin, and M. Hussein, Int. J. Nanomed. 15, 1437 (2020). https://doi.org/10.2147/IJN.S236927

    Article  Google Scholar 

  8. N. Yokomichi, T. Nagasawa, A. Coler-Reilly, H. Suzuki, Y. Kubota, R. Yoshioka, A. Tozawa, N. Suzuki, and Y. Yamaguchi, Hum. Cell 26, 8 (2013). https://doi.org/10.1007/s13577-012-0057-0

    Article  Google Scholar 

  9. D. Volodkin, A. Petrov, M. Prevot, and G. Sukhorukov, Langmuir 20, 3398 (2004). https://doi.org/10.1021/la036177z

    Article  Google Scholar 

  10. N. Zashikhina, V. Sharoyko, M. Antipchik, I. Tarasenko, Y. Anufrikov, A. Lavrentieva, T. Tennikova, and E. Korzhikova-Vlakh, Pharmaceutics 11, 27 (2019). https://doi.org/10.3390/pharmaceutics11010027

    Article  Google Scholar 

  11. M. Dizaj, M. Barzegar-Jalali, M. Zarrintan, K. Adibkia, and F. Lotfipour, Expert Opin. Drug Delivery 12, 1649 (2015). https://doi.org/10.1517/17425247.2015.1049530

    Article  Google Scholar 

  12. R. Mydin, I. Zahidi, N. Ishak, N. Ghazali, S. Moshawih, and S. Siddiquee, Malays. J. Med. Health Sci. 14, 201 (2018).

    Google Scholar 

  13. A. Trofimov, A. Ivanova, M. Zyuzin, and A. Timin, Pharmaceutics 10, 167 (2018). https://doi.org/10.3390/pharmaceutics10040167

    Article  Google Scholar 

  14. Y. Svenskaya, B. Parakhonskiy, A. Haase, V. Atkin, E. Lukyanets, D. Gorin, and R. Antolini, Biophys Chem. 182, 11 (2013). https://doi.org/10.1016/j.bpc.2013.07.006

  15. N. N. Sudareva, O. M. Suvorova, I. I. Tarasenko, N. N. Saprykina, N. V. Smirnova, S. G. Petunov, A. S. Radilov, A. S. Timin, E. G. Korzhikova-Vlakh, and A. D. Vilesov, Mendeleev Commun. 30, 25 (2020). https://doi.org/10.1016/j.mencom.2020.01.008

    Article  Google Scholar 

  16. P. V. Binevski, N. G. Balabushevich, V. I. Uvarova, A. S. Vikulina, and D. Volodkin, Colloids Surf., B 181, 437 (2019). https://doi.org/10.1016/j.colsurfb.2019.05.077

    Article  Google Scholar 

  17. M. Dizaj, S. Sharifi, E. Ahmadian, A. Eftekhari, K. Adibkia, and F. Lotfipour, Expert Opin. Drug Delivery 16, 331 (2019). https://doi.org/10.1080/17425247.2019.1587408

    Article  Google Scholar 

  18. A. Som, R. Raliya, L. Tian, W. Akers, J. Ippolito, S. Singamaneni, P. Biswas, and S. Achilefu, Nanoscale 8, 12639 (2016). https://doi.org/10.1039/C5NR06162H

    Article  ADS  Google Scholar 

  19. P. V. Popryadukhin, N. N. Sudareva, O. M. Suvorova, G. Yu. Yukina, E. G. Sukhorukova, N. N. Saprykina, O. V. Galibin, and A. D. Vilesov, Cell. Ther. Transplant. 9, 78 (2020). https://doi.org/10.18620/ctt-1866-8836-2020-9-4-78-84

    Article  Google Scholar 

  20. N. N. Zashikhina, M. V. Volokitina, V. A. Korzhikov-Vlakh, I. I. Tarasenko, A. Lavrentieva, T. Scheper, E. Rhuel, R. V. Orlova, T. B. Tennikova, and E. G. Korzhikova-Vlakh, Eur. J. Pharm. Sci. 109, 1 (2017). https://doi.org/10.1016/j.ejps.2017.07.022

    Article  Google Scholar 

  21. N. Sudareva, O. Suvorova, N. Saprykina, N. Smirnova, P. Bel’tyukov, S. Petunov, A. Radilov, and A. Vilesov, J. Microencapsulation 35, 619 (2018). https://doi.org/10.1080/02652048.2018.1559247

    Article  Google Scholar 

  22. Y. Harahap, P. Ardiningsih, A. C. Winarti, and D. J. Purwanto, Drug Design, Devel. Therapy 14, 3469 (2020). https://doi.org/10.2147/DDDT.S251144

    Article  Google Scholar 

Download references

Funding

The work was performed within the framework of budget-supported research project no. АААА-А20-120022090044-2, Institute of Macromolecular Compounds, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sudareva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The experiments involving laboratory animals were performed in accordance with the regulations for using experimental animals (principles of European Convention (Strasbourg, 1986) and the Declaration of Helsinki developed by the World Medical Association concerning humane treatment of animals (1996)).

CONFLICT OF INTERESTS

Authors declare no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudareva, N.N., Suvorova, O.M., Korzhikova-Vlakh, E.G. et al. Comparison of Delivery Systems for Chemotherapy Preparation Doxorubicin using Electron Microscopic and Hydrodynamic Methods. Tech. Phys. 67, 277–282 (2022). https://doi.org/10.1134/S1063784222050103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222050103

Keywords:

Navigation